Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Effect of Mid-Rotation Fertilization on the Wood Properties of Loblolly Pine (Pinus Taeda)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Mid-rotation fertilization is a common practice in the management of loblolly pine (Pinus taeda L.) plantations, typically providing large improvements in growth. However, concerns exist about the quality of wood produced following fertilization. The objective of this study was to develop an understanding of wood property changes following fertilization. Wood samples from a study involving four levels of fertilization applied to a thinned mid-rotation loblolly pine plantation located on the lower coastal plain of North Carolina were sampled. The study was laid out in a randomized complete block design involving four blocks and four levels of nitrogen fertilizer: Control-000, 112, 224 and 336 kg/ha, along with 28 kg/ha of phosphorus with all treatments. Thirty-two trees were felled and disks were cut at five heights from each tree. Wood properties including modulus of elasticity, air-dry density and tracheid anatomical properties were measured for each of the three post-fertilization annual growth rings using near infrared (NIR) spectra obtained from the radial face of strips cut from the disks. An analysis of variance was conducted on three-year basal area weighted average stiffness, air-dry density, and tracheid anatomical properties. A decrease in stiffness, air-dry density, tracheid wall thickness, and an increase in tracheid radial diameter were observed for the heaviest fertilizer treatment (336 kg/ha) compared to the control and 112 kg/ha of nitrogen. Microfibril angle (MFA), cell tangential diameter, and tracheid perimeter showed little change. Wood properties of trees receiving fertilizer rates of 112 and 224 kg/ha were not significantly affected.

Loading

Full text loading...

/content/journals/10.1163/22941932-90000202
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-90000202
Loading

Article metrics loading...

/content/journals/10.1163/22941932-90000202
2009-01-01
2016-12-10

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation