Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Microstructural Properties of Common Yew and Norway Spruce Determined with Silviscan

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Yew wood holds a special position within the softwoods with regard to its exceptional elasto-mechanical behaviour. Despite a relatively high density, it is highly elastic in the longitudinal direction (the modulus of elasticity is low and the stretch to break high). In the radial-tangential plane, its elastic anisotropy is clearly less pronounced compared to other softwoods such as spruce. Knowledge of the anatomical organisation of yew wood is an indispensable precondition for the correct interpretation of this conspicuous mechanical behaviour. The aim of this study, therefore, was to interpret the difference in elasto-mechanical behaviour of yew and spruce (as a reference) through their relative microstructures as measured by SilviScan, a technology based on X-ray densitometry, X-ray diffractometry and optical microscopy. This system is able to measure a variety of structural features in a wood sample. The results reveal that the elasto-mechanical response of yew is primarily due to large microfibril angles and a more homogeneous cross-sectional tissue composition (regarding tracheid dimensions and density distribution) compared to spruce. With respect to structure-property relationships, it was concluded that yew wood combines properties of normal and compression wood and therefore takes an intermediate position between them.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation