Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here


No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Development of cambial variant and xylem structure were studied in the stem of Cocculus hirsutus (Menispermaceae). In the early stages of stem development several collateral vascular bundles are joined by interfascicular cambium resulting in the formation of a complete cambial cylinder. After functioning for two to three years the cambial ring ceases its activity. Subsequently a second ring of cambium is formed from the innermost cortical parenchyma cells. These parenchyma cells undergo periclinal divisions to give rise to cells that become lignified, abaxially, and cambial cells, adaxially. The cambial cells divide periclinally giving rise to individual vascular bundles with xylem and phloem. Later the cambium in each bundle is joined by interfascicular cambium. Subsequent cambia develop similarly resulting in the formation of successive rings of xylem and phloem. During the leafless condition, all the cambial rings are dormant, and flanked by mature xylem and phloem elements. With the sprouting of new leaves, either the existing outermost cambium reactivates or an entire new ring of cambium develops. The xylem is diffuseporous with indistinct growth rings. It is composed of fibre-tracheids, tracheids, vessel elements, libriform fibres, and parenchyma cells. Xylem rays are multiseriate, compound and heterocellular. Deformed libriform fibres and vessel elements commonly occur among the ray cells in all the successive rings of xylem. The length of fibres and the height and width of xylem rays increase gradually from the centre towards the periphery of the stem.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation