Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here


No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Sonneratia alba J. Smith is a fast-growing pioneer mangrove tree species, and woody pneumatophores are one of the main morphological characters distinguishing this species from other mangrove species. Xylem rays of the pneumatophores in S. alba were exclusively uni-seriate and homocellular with procumbent cells. Intercellular spaces developed mainly between rows of procumbent ray cells to form continuous canals along the pneumatophore radius. Short axial intercellular spaces were present at the end wall sites of spindle-like procumbent ray cells within the same row, and interconnected with the neighboring radial intercellular canals into an intercellular space network within the xylem rays. The radial intercellular canals of xylem rays were larger in the outer secondary xylem than in the inner secondary xylem of a pneumatophore, and in the underground part than in the aboveground part. Blind pits (unilateral pits) towards the radial intercellular canals developed in the radial walls of vessels and the transverse walls of ray cells. The blind pits of vessels were bordered and vestured, and arranged radially in two regular rows in larger radial intercellular canals, but in one row or diffusely in narrower canals. The structural characters of the xylem rays and the intercellular space system of the pneumatophore suggest their possible involvement in water transport in the secondary xylem. An intercellular space system did not occur in xylem rays of the cable roots and stems of this species.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation