Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Hydraulic Conductivity in Trunk Xylem of Elm, Ulmus Americana

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

The notion that most xylem transport in stems of ring-porous trees occurs in the outermost growth ring requires experimental support. Significance of this ring is challenged by workers who find tracer dyes appearing in 4 to 8 growth rings rather than in only the outermost increment. We test the hypothesis that the outermost growth ring is of overriding significance in fluid transport through stems of Ulmus, a ring-porous tree. Fluid flow through the outermost ring was quantified by removing that ring, calculating gravity flow rates (hydraulic conductivity at 10.13 kPa m-1 ), and by tracing the transport pathway through control and experimental stem segments. From measurements corroborating theoretical calculations based on Poiseuille's law, over 90% of fluid flow through the stem occurs through the outermost ring. Remaining rings combine to account for less than 10% of xylem transport. As a result of dependence upon transport in the most superficial xylem, ring-porous trees such as elm, oak, ash, and chestnut are particularly susceptible to xylem pathogens entering from the bark.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation