Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Xylem' Structure and Water Conduction in Conifer Trees, Dicot Trees, and Llanas

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Coniferous trees, dicotyledonous trees, and dicotyledonous lianas (woody vines) form interesting morphological contrasts in their xylem structure and function. Lianas have among the largest (up to 8 metres or more) and widest (up to 500 µm) vessels in the plant kingdom. In conifers the water transport occurs through tracheids, which are relatively inefficient in transport. We can compare disparate growth forms in terms of leaf-specific. conductivity (LSC), which is hydraulic conductivity per surface area of leaves supplied by a stem. LSC is inversely proportional to localised pressure potential gradients. LSC is equal to the Huber value (sapwood area per leaf area supplied) times the specific conductivity (hydraulic conductivity per sapwood area). Lianas are similar to dicot trees and conifers in having hydraulic constrictions (low LSCs) at branch junctions. However, lianas generally have greater LSCs and specific conductivities but lower Huber values than do conifers. Dicot trees are intermediate in these values. The narrow but efficient stems of lianas are possible partly because lianas are not self-supporting; the mechanical requirements are reduced. Secondly, the wide and efficient vessels of lianas remain conductive for much longer than might be expected (two to several years, versus one year for similar wide vessels in dicots). Based upon experiments with glass capillary tubes and with living stem tissue, larger vessels are more susceptible to freezinginduced embolism than are small ones. However, in lianas, root pressures might serve to refill cavitated vessels on a daily or seasonal basis.

Loading

Full text loading...

/content/journals/10.1163/22941932-90000959
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/22941932-90000959
Loading

Article metrics loading...

/content/journals/10.1163/22941932-90000959
1985-01-01
2016-12-08

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation