Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Bordered Pit Aspiration in the Wood of Cryptomeria Japonica in Relation to Air Permeability

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of IAWA Journal

Aspiration of bordered pits in Cryptomeria japonica (L. f.) D. Don was studied in relation to the air permeability in sapwood, transition zone wood, and heartwood. The percentage of aspirated pits relative to the total number of bordered pits with observable tori was determined in samples that were epoxy-embedded and thin sectioned. Air permeability of air-dried and freeze-dried wood samples was measured following the method described by Siau (1984). Pit membrane structure of air-dried and freeze-dried samples was investigated by scanning electron microscopy on split radial surfaces. It is proposed that pit aspiration progresses during heartwood formation as already reported, but the pit aspiration was frequently incomplete and the percentage varied between individuals. The pit aspiration percentage was not obviously related to the sample's initial green moisture content or heartwood color. The results from permeability measurement and SEM observation on air- and freeze-dried samples suggest that pit aspiration occurred in sapwood samples (the initial moisture content of which ranged from 200 to 300%) during air-drying and caused a significant decrease in permeability confirming the pit aspiration mechanism proposed by Hart and Thomas (1967). In the heartwood, encrustation of pit membranes prevented aspiration during air-drying.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    IAWA Journal — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation