Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Genetic diversity of Frankia strains isolated from root nodules of Casuarina in Israel

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Eight Frankia strains were isolated from root nodules of Casuarina cunning-hamiana trees growing in a sandy loam soil at an irrigated landscaping site on Kib-butz Naan, in Israel. Analysis of the 16S ribosomal DNA gene sequence determined the diversity of the different isolated strains, and the sequences were compared to two known Frankia strains: DSM-44251, isolated from Alnus rubra (Betulaceae family) and DSM-43829, isolated from Colletia crucita (Rhamnaceae family). The phylogenetic tree constructed, based on the 16S rDNA sequencing results, revealed that the strains isolated from Casuarina cunninghamiana had a high phylogenetic similarity to the known strain isolated from Alnus rubra, whereas the sequence ho-mology of the strain isolated from Colletia crucita was located at a distant branch of the phylogenetic tree. These results demonstrate for the first time the existence of “actinorhizal” symbiosis in Israeli soil and the relation of Israeli Frankia strains to known strains from different regions of the world.

Affiliations: 1: Institute of Soil Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center ; 2: Department of Food Science, Agricultural Research Organization, The Volcani Center


Full text loading...


Data & Media loading...

1. Mirza, M.S., Hand, D., Dobritsa, P. 1994. Phylogenetic studies on uncultured Frankia populations in nodules of Datisca cannabina. Can. J. Microbiol. 40: 313–318.
2. Maggia, L., Bousquet, J. 1994. Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host pro-miscuity towards Frankia. Mol. Ecol. 3: 459–467.
3. Rouvier, C.Y., Prin, P., Reddel, P., Normand, P., Simonet, P. 1996. Genetic diversity among Frankia strains nodulating members of the family Casuarinaceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed root nodules. Appl. Environ. Micro-biol. 62: 979–985.
4. Sayed, W.F. 2002. Changes in growth of Frankia strains, its in-fectivity and effectiveness on Casuarina equisetifolia after incubation at high temperatures and different desiccation regimes. Proc. 2nd Int. Conf. Biol. Sci. Tanta Univ., Egypt. Vol. 2: 478– 490.
5. Fernandez, M.P., Meugnier, H., Grimont, P.A.D., Bardin, R. 1989. Deoxyribonucleic acid relatedness among the genus Frankia. Int. J. Bacteriol. 39: 424–429.
6. Benson, D.R., Stephens, D.W., Clawson, M.L., Silvester, W.B. 1996. Ampli?cationof16SrRNAgenesfromFrankia strains in root nodules of Ceanothus griseus, Coriaria ar-borea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. Appl. Environ. Microbiol. 62: 2904–2909.
7. Nazaret, S.P., Simonet, P., Normand, P., Bardin, R. 1989. Genetic diversity among Frankia isolated from Casuarina nodules. Plant Soil 118: 241–247.
8. Nazaret, S., Cournoyer, B., Normand, P., Simonet, P. 1991. Phylogenetic relationships among Frankia genomic spe-cies determined by use of ampli?ed16SrDNAsequences.J. Bacteriol. 173: 4072–4078.
9. Wilson, K. 1989. Preparation of genomic DNA from bacteria. In: Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Smith, J.A., Seidman, J.G., Struhl, K., eds. Current proto-cols in molecular biology. Vol. 1. Wiley, New York.
10. Wolters, D.J., Van Dijk, C., Zoetendal, E.G., Akkermans, A.D. 1997. Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. Nodules from wetland soil inoculants. Mol. Ecol. 6: 971–981.
11. Tisa, L.S., Ensign, J.C. 1987. Formation and regeneration of protoplasts of the actinorhizal nitrogen-?xingactino-mycete Frankia. Appl. Environ. Microbiol. 53: 53–56.
12. Tisa, L.S., McBride, M., Ensign, J.C. 1983. Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can. J. Bot. 61: 2768–2773.
13. Thompson, D.R., Higgins, D.G., Gibson, T.J. 1994. CLUST-ALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position speci?cgappenalticsandweightmatrixchoice.NucleicAcids Res. 22: 4673–4680.
14. Wall, L.G. 2000. The actinorhizal symbiosis. J. Plant Growth Regul. 19: 167–182.
15. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
16. An, C.S., Riggsby, W.S., Mullin, B.C. 1985. Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int. J. Syst. Bacteriol. 35: 140–146.
17. Baker, D.D., Schwintzer, C.R. 1990. Introduction. In: Schwin-tzer, C.R., Tjepkema, J.D., eds. The biology of Frankia and actinorhizal plants. Academic Press, New York, pp. 3–13.
18. Baker, D.D, Mullin, B.C. 1994. Diversity of Frankia nodule endophytes of the actinorhizal shrub Ceanothus as as-sessed by RFLP patterns from single nodule lobes. Soil. Biol. Biochem. 26: 547–552.
19. Benson, D.R., Clawson, M.L. 2000. Evolution of the actino-rhizal plant symbioses. In: Triplett, E.W., ed. Prokaryotic nitrogen ?xation:amodelsystemforanalysisofbiologicalprocess. Horizon Scienti?cPress,Wymondham,UK,pp.207–224.
20. Benson, D.R., Silvester, W.B. 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57: 293–319.
21. Huguet, V., Mergeay, M., Cervantes, E., Fernandez, M.P. 2001. Diversity and speci?cityofFrankia strains in nod-ules of sympatric Myrica gale, Alnus incana, and Shep-herdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol. 67: 2116–2122.
22. Berry, A.M., Harriott, O.T., Moreau, R.A., Osman, S.F., Ben-son, D.R., Jones, A.D. 1993. Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. USA 90: 6091–6094.
23. Callaham, D., Del Tridici, P., Torrey, J.G. 1978. Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot. Gaz. 140 (Suppl.): S1–S9.
24. Devereux, J., Haeberli, P., Smithies, O. 1984. A compre-hensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395.
25. Dobritsa, S.V., Stupar, O.S. 1989. Genetic heterogeneity among Frankia isolates from root nodules of individual actinorhizal plants. FEMS Microbiol. Lett. 58: 287–292.
26. Normand, P., Arso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson, J., Evtushenko, L., Misra, A.K. 1996. Molecular phylogeny of the genus Frankia and related genera and emen-dation of family Frankiaceae. Int. J. Syst. Bacteriol. 46: 1–9.
27. Maggia, L., Nazaret, S., Simonet, P. 1992. Molecular charac-terization of Frankia isolates from Casuarina equisetifolia root nodules harvested in West Africa (Senegal and Gam-bia). Acta Oecol. 13: 453–461.
28. Lavire, C., Louis, D., Perriere, G., Briolay, J., Normand, P., Cournoyer, B. 2001. Analysis of pFQ31, a 8551-bp cryptic plasmid from the symbiotic nitrogen-?xingactinomyceteFrankia. FEMS Microbiol. Lett. 197: 111–116.
29. Schwencke, J., Caru, M. 2001. Advances in actinorhizal sym-biosis: host plant-Frankia interactions, biology, and appli-cation in arid lands reclamation. A review. Arid Lands Res. Manage. 15: 285–327.
30. Simonet, P., Normand, P., Hirsch, A. M., Akkermans, A.D.L. 1990. The genetics of the Frankia actinorhizal symbiosis. In: Gresshoff, P.M., ed. The molecular biology of symbiotic nitrogen ?xation.CRCPress,BocaRaton,FL,pp.70–109.
31. Oakley, B., North, M., Franklin, J.F., Hedlund, B.P., Staily, J.T. 2004. Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl. Environ. Microbiol. 70: 6444–6452.
32. Simonet, P., Navarro, E., Rouvier, C., Reddell, P., Zimpfer, J., Dommergues, Y., Bardin, R., Combarro, P., Hamelin, J., Domenach, A.M., Gourbiere, F., Prin, Y., Dawson, J.O., Normand, P. 1999. Co-evolution between Frankia popu-lations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ. Micro-biol. 1: 525–33.
33. Ochman, H., Wilson, A.C. 1987. Evolution in bacteria: evi-dence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26: 74–86.
34. Page, R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.
35. Ritchie, N.J., Myrold, D.D. 1999. Geographic distribution and genetic diversity of Ceanothus-infective Frankia strains. Appl. Environ. Microbiol. 65: 1378–1383.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation