Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Phylogeny of snapdragon species (Antirrhinum; Scrophulariaceae) using non-coding cpDNA sequences

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Antirrhinum is an Old World genus of up to 25 perennial taxa, mainly located in the western Mediterranean basin. A molecular analysis of 24 taxa of Antirrhinum was undertaken using cpDNA sequences from the trnT (UGU)-trnL (UAA) 5' exon region. The Kimura two-parameter model was chosen to calculate pairwise nucleotide divergence values between cpDNA sequences, and a bootstrapped neighbor-joining dendrogram was constructed from the nucleotide divergence distance matrix. Eighteen sites were variable across the studied samples and the position of 7 indels, ranging from 1 to 7 bp, was inferred from the sequence alignment. Several trnT-trnL sequences are identical in: some members of subsection Kickxiella (A. subbaeticum, A. valentinum, A. mollisimum, A. charidemi, and A. hispanicum); subsection Antirrhinum (A. australe, A. graniticum, and three subspecies of A. majus); and some species from subsection Kickxiella (A. lopesianum and A. molle) together with subsection Streptosepalum (A. braunblanquetii). Few supported clades were recovered from distance- or parsimony-based methods, all of which conflicted with traditional infrageneric splitting. Our cpDNA results are congruent with, but do not prove, the hypothesis of reticulation as one of the major processes to have occurred in the evolution of snapdragons, and suggest that other species in addition to those belonging to the A. majus group may also have been involved in the reticulation scenario.

Affiliations: 1: Departamento de Biología Vegetal (Botánica), Universidad de Murcia ; 2: Jardín Botánico, Universidad de Valencia ; 3: Jardín Botánico, Universidad de Valencia


Full text loading...


Data & Media loading...

1. Almeida, J., Rocheta, M., Galego, L. 1997. Genetic control of flower shape in Antirrhinum majus. Development 124: 1387-1392.
2. Applequist, W.L., Wallace, R.S. 2002. Phylogeny of the Madagascan endemic family Didiereaceae. Plant Syst. Evol. 221: 157-166.
3. Baur, E. 1933. Artumgrenzug und artbildung in der Gattung Antirrhinum, Sektion Antirrhinastrum. Zeitschr. Indukt. Abstamm. Vererbungsl. 63: 256-302.
4. Bolòs, O., Vigo, J. 1996. Flora dels Països Catalans. Vol. 3. Barcino, Barcelona.
5. Caputo, P., Cozzolino, S., Campo, I. 1996. Relationships among the Italian species of genus Antirrhinum L. (Scrophulariaceae) based on chloroplast DNA restriction fragment length polymorphisms. Delpinoa 33-34: 3-12.
6. Doyle, J.J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot. 17:144-163.
7. Fernández Casas, J. 1974. De flora hispanica II. Candollea 29: 327-335.
8. Fernández Casas, J. 1997. De Antirrhinis notulae. Fontqueria 48: 195-202.
9. Fernández Casas, J., García Villaraco, A., Susanna, A. 1981. Exsiccata quaedam a nobis nuper distributa, IV (254-500). Departamento de Botánica, Facultad de Ciencias, Universidad Autónoma Madrid.
10. Fiz, O., Valcárcel, V., Vargas, P. 2002. Phylogenetic position of Mediterranean Astereae and character evolution of daisies (Bellis, Asteraceae) inferred from nr DNA ITS sequences. Mol. Phylogenetics Evol. 25: 157-171.
11. Fuertes Aguilar, J., Rosselló, J.A., Nieto Feliner, G. 1999. Molecular evidence for the compilospecies model of reticulate evolution in Armeria (Plumbaginaceae). Syst. Biol. 48: 735-754.
12. Gutiérrez Larena, B., Fuertes Aguilar, J., Nieto Feliner, G. 2002. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Mol. Ecol. 11: 1965-1974.
13. Hewitt, G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276.
14. Jiménez, J.F. 2003: Procesos evolutivos en Antirrhinum L. (Scrophulariaceae). El caso de la subsección Kickxiella Rothm. PhD thesis, University of Murcia, Spain.
15. Jiménez, J.F., Sánchez-Gómez, P., Güemes, J., Werner, O., Rosselló, J.A. 2002. Genetic variability in a narrow endemic snapdragon (Antirrhinum subbaeticum, Scrophul-ariaceae) using RAPD markers. Heredity 89: 387-393.
16. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
17. Kornhall, P., Heidari, N., Bremer, B. 2001. Selagineae and Manuleeae, two tribes or one? Phylogenetic studies in the Scrophulariaceae. Plant Syst. Evol. 228: 199-218.
18. Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, Arizona.
19. Luo, D., Carpenter, R., Copsey, L., Vicent, C., Clark, J., Coen, E. 1999. Control of organ asymmetry in flowers of Antirrhinum. Cell 99: 367-376
20. Mateu-Andrés, I. 1999. Allozymic variation and divergence in three species of Antirrhinum L. (Scrophulariaceae-Antirrhineae). Bot. J. Linn. Soc. 131: 187-199.
21. Mateu-Andrés, I., Segarra-Moragues, J.G. 2000. Population subdivision and genetic diversity in two narrow endemics of Antirrhinum L. Mol. Ecol. 9: 2081-2087.
22. McSteen, P.C., Vincent, C.A., Doyle, S., Carpenter, R., Coen, E.S. 1998. Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Development 125: 2359-2369.
23. Mather, K. 1947. Species crosses in Antirrhinum I. Genetic isolation of the species majus, glutinosum, and orontium. Heredity 1: 175-186.
24. Palacios, C., Rosselló, J.A., González-Candelas, F. 2000. Study of the evolutionary relationships among Limonium species (Plumbaginaceae) using nuclear and cytoplasmic molecular markers. Mol. Phylogenetics Evol. 14: 232-249.
25. Pamilo, P., Nei, M. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5: 568-583.
26. Renner, S.S. 1999. Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am. J. Bot. 86: 1301-1315.
27. Rothmaler, W. 1943. Zur Gliederung der Antirrhineae. Feddes Repert. Species Nov. Regni Veget. 52: 16-39.
28. Rothmaler, W. 1956. Taxonomische monographie der Gattung Antirrhinum. Feddes Repert. Species Nov. Regni Veget. 136: 1-124.
29. Sutton, D.A. 1988. A revision of the tribe Antirrhineae. Oxford University Press, London.
30. Swofford, D.L. 1998. PAUP*: Phylogenetic Analysis Using Parsimony and other methods, version 4. beta test. Sinauer, Sunderland, MA.
31. Saitou, N., Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
32. Sang, T., Crawford, D.J., Stuessy, T.F. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Nat. Acad. Sci. USA 92: 6813-6817.
33. Roalson, E.H., Columbus, J.T., Friar, E.A. 2001. Phylogenetic relationships in Caricaceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst. Bot. 26: 318-341.
34. Shibaike,H., Akiyama, H., Uchiyama, S., Kasai K., Morita,T. 2002. Hybridization between European and Asian dandelions (Taraxacum section Ruderalia and section Mon-golica). 2. Natural hybrids in Japan detected by chloroplast DNA marker. J. Plant Res. 115: 321-328.
35. Small, R.L., Ryburn, J.A., Cronn, R.C., Seelanan, T., Wendel, J.F. 1998. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently derived plant group. Am. J. Bot. 85: 1301-1315.
36. Soltis, D.E., Soltis, P.S., Milligan, B.G. 1992. Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. In: Soltis, P.S., Soltis, D.E., Doyle, J.J., eds. Molecular systematics of plants. Chapman and Hall, New York, pp. 117-150.
37. Taberlet, P., Gielly, L., Pautou, G., Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109.
38. Theissen, G., Saedler, H. 1999. The golden decade of molecular floral development (1990-1999): a cheerful obituary. Dev. Genet. 25: 181-193.
39. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
40. Torres, E., Iriondo, J.M., Pérez, C. 2002. Vulnerability and determinants of reproductive success in the narrow endemic Antirrhinum microphyllum (Scrophulariaceae). Am. J. Bot 89: 1171-1179.
41. Torres, E., Iriondo, J.M., Pérez, C. 2003. Genetic structure of an endangered plant, Antirrhinum microphyllum (Scro-phulariaceae): allozyme and RAPD analysis. Am. J. Bot. 90: 85-92.
42. Vargas, P., McAllister, H.A., Morton, C., Jury, S.L., Wilkinson, M.A. 1999. Polyploid speciation in Hedera (Araliaceae): phylogenetic and biogeographic insights based on chromosome counts and ITS sequences. Plant Syst. Evol. 219: 165-179.
43. Vargas, P., Rosselló, J.A., Oyama, R., Güemes, J. 2004. Nuclear and chloroplast evidence for natural groups in the tribe Antirrhineae (Scrophulariaceae) reveals three independent evolutionary lineages of taxa from the New World and the Old. Plant Syst. Evol. 249: 151-170.
44. Vieria, C.P., Charlesworth, D. 2001a. Low rates of silent substitution in nuclear genes of two distantly related Scrophulariaceae (Antirrhinum and Verbascum). Mol. Biol. Evol. 18: 1940-1951.
45. Vieria, C.P., Charlesworth, D. 2001b. Low diversity and divergence in the fil1 gene family of Antirrhinum (Scrophulariaceae). J. Mol. Evol. 52: 171-181.
46. Vieria, C.P., Vieria, J., Charlesworth, D. 1999. Evolution of the Cycloidea gene family in Antirrhinum and Misopates. Mol. Biol. Evol. 16: 1474-1483.
47. Waites, R., Selvadurai, H.R., Oliver, I.R., Hudson, A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779-789.
48. Webb, D.A. 1971. Taxonomic notes on Antirrhinum L. Bot. J. Linn. Soc. 64: 271-275.
49. Webb, D.A. 1972. Antirrhinum L. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., eds. Flora Europaea. Vol. 3. Cambridge University Press, Cambridge, pp. 221-224.
50. Whittall, J., Liston, A., Gisler, S., Meinke, R.J. 2000. Detecting nucleotide additivity from direct sequences is a SNAP: an example from Sidalcea (Malvaceae). Plant Biol. 2: 211- 217.
51. Xue, Y., Carpenter, R., Dickinson, H.G., Coen, E.S. 1996. Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8: 805-814.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation