Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Plant evolution in the Late Cretaceous (Turonian) of the southern Negev, Israel

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The fossil flora from the Late Cretaceous (Turonian) localities Gerofit and Qetura with 46 species is presently the most representative for the northern Gondwana realm. The remains of terrestrial and aquatic plants occur in the Upper Shale Member of the Ora Formation bracketed between carbonate sequences with mid-Turonian ammonites. The orders Ranunculales, Nymphaeales, Nelumbonales, Trochodendrales, Hamamelidales, Juglandales, Rosales, Myrtales, and Sapindales are recognized, with various degrees of confidence, among the dicotyledons; the Najadales, Pontederiales, Arales, Cyclanthales, Arecales, and Typhales, among the monocotyledons. A peculiar Gerofitia group, including five genera, is considered as possibly representing a new extinct order of proangiosperms or early angiosperms. The modern aspect of the Turonian angiosperms from the southern Negev suggests a high rate of morphological macroevolution accompanied by ecological differentiation. The earliest angiosperm mangroves are inferred on the basis of taphonomic evidence, root morphology, and cryptoviviparous propagules. The flower/fruit remains indicate the combretaceous and rhizophoraceous affinities of the Cretaceous mangrove species. A diversification center for these groups might have occurred at that time on the northern edge of the Gondwana realm. Instead of decreasing with a supposed convergence of the landmasses, the floristic disparity of the Laurasian and Gondwanic realms steadily increased during the Cretaceous.

Affiliations: 1: Institute of Evolution, University of Haifa ; 2: Institute of Evolution, University of Haifa


Full text loading...


Data & Media loading...

1. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.
2. Schnell, R. 1967. Etudes sur l'anatomie et la morphologie des Podostémacées. Candollea 22: 157-225.
3. Schrank, E., Rüffle, L. 2003. The Late Cretaceous leaf flora from Jebel Mudaha, Sudan. Cour. Forsch.-Inst. Senckenb. 241: 119-129.
4. Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Rev. Paleobot. Palynol. 89: 257-286.
5. Tomlinson, P.B. 1994. The botany of mangroves. Cambridge University Press, Cambridge.
6. Ueda, K., Hanyuda, T., Nakano, A., Shiuchi, T., Seo, A., Okubu, H., Hotta, M. 1997. Molecular phylogenetic position of Podostemaceae, a marvelous aquatic flowering plant family. J. Plant Res. 110: 87-92.
7. Van Konijnenburg-van Cittert, H., Bandel, K. 2001. Jurassic plants from Djebel Tih, Sinai. Mitt. Geol.-Paläont. Inst. Univ. Hamburg 85: 47-64.
8. Watson, J. 1988. The Cheirolepidiaceae. In: Beck, C.B, ed. Origin and evolution of Gymnosperms. Columbia University Press, New York.
9. Westlake, D.F., Kvét, J., Szczepañski, A., eds. 1998. The production ecology of wetlands. Cambridge University Press, Cambridge.
10. Wilson, P.A., Norris, R. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412: 425-429.
11. Barale, G., Ouaja, M. 2002. La biodiversité végétale des gisements d'âge Jurassique supérieur--Crétacé inférieur de Merbah El Asfer (Sud-Tunisien). Cretaceous Res. 23: 707-737.
12. Barale, G., Ouaja, M., Philippe, M. 2000. Une flore bathonienne dans la formation Techout du Sud-Est tunisien. N. Jb. Geol. Paläont. Mh. 11: 681-697.
13. Barale, G., Philippe, M., Gèze, R., Saad, D. 2003. Nouvelles flores crétacées au Liban. N. Jb. Geol. Paläont. Mh. 7: 400- 414.
14. Bartov, J., Eyal, Y., Garfunkel, Z., Steinitz, G. 1972. Late Cretaceous and Tertiary stratigraphy and paleogeography of southern Israel. Isr. J. Earth Sci. 21: 69-97.
15. Chapman, V.J. 1976. Mangrove vegetation. J. Cramer, Vaduz.
16. Collinson, M.E. 1980. Recent and Tertiary seeds of the Nymphaeaceae sensu lato with a revision of Brasenia ovula (Brong.) Reid and Chandler. Ann. Bot. 46: 603-632.
17. Dilcher, D.L., Basson, P.W. 1990. Mid-Cretaceous angiosperm leaves from a new fossil locality in Lebanon. Bot. Gaz. 151: 538-547.
18. Dobruskina, I.A. 1996. Connections of Israeli Upper Cretaceous flora with coeval floras of adjacent regions. Rheedea 6: 43-58.
19. Lejal-Nicol, A., Dominik, W. 1990. Sur la paleoflore a Weichseliaceae et a angiospermes du Cenomanien de la region de Bahariya (Egypte du Sud-Oest). Berliner Geowiss. Abh. (A) 120: 957-992.
20. Les, D.H., Philbrick, C.T., Novelo, R.A. 1997. The phylogenetic position of river-weeds (Podostemaceae): insights from rbcL sequence data. Aquat. Bot. 57: 5-27.
21. Lewy, Z. 1989. Subdivision of the Turonian stage in Israel. Isr. J. Earth Sci. 38: 45-46.
22. Lorch, J. 1965. Fossil plants of Israel. Mada 1: 36-43 (in Hebrew).
23. Lorch, J. 1967. Assemblage of fossil plant imprints. Mada 11, 6: back cover.
24. Mepham, R.H. 1983. Mangrove floras of the southern continents. Part 1. The geographical origin of the Indo-Pacific mangrove genera and the development and present status of the Australian mangroves. S. Afr. J. Bot. 2: 1-8.
25. Reineck, H.E. 1976. Layered sediments of tidal flats, beaches, and shelf bottoms of the North Sea. In: Klein, G. de V., ed. Holocene tidal sedimentation. Benchmark Papers in Geology 30: 64-79.
26. Riis, T., Hawes, I. 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquat. Bot. 74: 133-148.
27. Barale, G., Ouaja, M. 2001. Découverte de nouvelles flores avec des restes à affinités angiospermiennes dans le Crétacé inférieur du Sud Tunisien. Cretaceous Res. 22: 131-143.
28. Dobruskina, I.A. 1997. Turonian plants from the southern Negev, Israel. Cretaceous Res. 18: 87-107.
29. Duke, N.C. 1995. Genetic diversity, distributional barriers and rafting continents--more thoughts on the evolution of mangroves. Hydrobiologia 295: 161-181.
30. Freund, R., Raab, M. 1969. Lower Turonian ammonites from Israel. Spec. Papers Palaeontol. 4: 1-83.
31. Fu, Li-kuo, Ed. 1992. China plant red data book. Science Press, Beijing .
32. Gill, A.M., Tomlinson, P.B. 1975. Aerial roots: an array of forms and functions. In: Torrey, J.G., Clarkson, D.T., eds. The development and function of roots. Academic Press, London, pp. 237-260.
33. Ginsburg, R.N., ed. 1975. Tidal deposits. A casebook of recent examples and fossil counterparts. Springer, Berlin.
34. Gomez, B., Martín-Closas, C., Barale, G., de Porta, N.S., Thévenard, F., Guignard, G. 2002a. Frenelopsis (Coniferales: Cheirolepidiaceae) and related male organ genera from the Lower Cretaceous of Spain. Palaeontology 45 (5): 997-1036.
35. Gomez, B., Thévenard, F., Fantin, M., Giusberti, L. 2002b. Late Cretaceous plants from the Bonarelli Level of the Venetian Alps, northeastern Italy. Cretaceous Res. 23: 671-685.
36. Jäger-Zürn, I., Mathew, C.J. 2002. Cupule structure of Dalzellia ceylanica and Indotristichia ramosissima (Podostemaceae). Aquat. Bot. 72: 79-91.
37. Juncosa, A.M. 1982. Developmental morphology of the embryo and seedling of Rhizophora mangle L. (Rhizophoraceae). Am. J. Bot. 69: 1599-1611.
38. Juncosa, A.M. 1984. Embryogenesis and seedling developmental morphology in Briguiera exaristata Ding Hou (Rhizophoraceae): Am. J. Bot. 71: 180-191.
39. Klein, G. de V. 1971. A sedimentary model for determining paleotidal range. Geol. Soc. Am. Bull. 82: 2585-2592.
40. Krassilov, V.A. 1997. Angiosperm origins: morphological and ecological aspects. Pensoft, Sofia.
41. Krassilov, V.A. 2003. Terrestrial paleoecology and global change. Pensoft, Sofia.
42. Krassilov, V. 2004. Cretaceous floral structures from Negev, Israel as evidence of angiosperm radiation in the Gondwana realm. Acta Palaeobot. 44: 37-53
43. Krassilov, V.A., Bacchia, F. 2000. Cenomanian florule of Nammoura, Lebanon. Cretaceous Res. 21: 785-799.
44. Krassilov, V.A., Dobruskina, I.A. 1998. Gramminoid plant from the Cretaceous of Middle East. Palaeontol. J. (Moscow) 4: 106-110.
45. Krassilov, V.A., Lewy, Z., Nevo, E. 2002a. News from paleobotany and paleoecology: Negev vegetation and climate ca. 90 million years old. Bull. Univ. Haifa, pp. 3-5 (in Hebrew).
46. Krassilov, V.A., Nevo, E., Lewy, Z. 2002b. Cretaceous floras of Middle East and climatological implications. Annu. Mtg. Isr. Geol. Soc. Maagan, pp. 23-24.
47. Krassilov, V.A., Lewy, Z., Nevo, E. 2004. Syngenesis and macroevolution in mangrove communities from the Cretaceous of Negev (Israel). In: Leonova, T.B., ed. Ecosystem restructurings and evolution of biosphere. Paleontological Institute, Moscow, pp. 23-39.
48. Lacerda, L.D., Conde, J.E., Kjerfve, B., Alvarez-León, R., Alarcón, C., Polanía, J. 2002. American mangroves. In: Lacerda, L.D., ed. Mangrove ecosystems: function and management. Springer, Berlin, pp. 1-62.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation