Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Israeli R & D activities in seaweed cultivation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Intensive cultivation of seaweeds in tanks and ponds has been developed in Israel during the past twenty years. The achievements and problems presented in this review are based on major studies from other parts of the world. The advantages and disadvantages of on-land free-floating cultivation are analyzed in a detailed and comprehensive way, using physical, chemical, and biological variables in tank cultures. The common target variables of this analysis are the growth rate and yield of the cultured seaweeds. The main species Gracilaria, Ulva, and Porphyra, which are presented here, are of economic value for the food and food additive market. This tank culture is compared to the upscale pond culture of bigger facilities. The unique subject of integrated seaweed cultivation with fish or marine invertebrates is discussed separately. Finally, an economic analysis is presented in order to serve as a guideline for decision-making in seaweed cultivation for commercial products, and for considering future developments.

Affiliations: 1: Israel Oceanographic and Limnological Research (retired)


Full text loading...


Data & Media loading...

1. Beer, S. 1996. Photosynthetic utilization of inorganic carbon in Ulva. Sci. Mar. 60: 125-128.
2. Bidwell, R. G. S., McLachlan, J., Lloyd, D. H. 1985. Tank cultivation of Irish moss, Chondrus crispus. Bot. Mar. 28: 87-97.
3. Boulus, A., Spaneir, E., Friedlander, M. 2007. Effect of outdoor conditions on growth rate and chemical composition of Gelidium crinale in culture. J. Appl. Phycol. 19: 471-478.
4. Buschmann, A. H. 2001. The use of seaweeds in integrated aquaculture: the Chilean experience. J. Phycol. 37: S 9-9.
5. Buschmann, A. H., Mora, O. A., Gomez, P., Bottger, M., Buitano, S., Retamales, C., Vergara, P. A., Gurierrez, A. 1994. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283-300.
6. Buschmann, A. H., Troell, M., Kautsky, N., Kautsky, L. 1996. Integrated tank cultivation of salmonids and Gracilaria chilensis. Hydrobiologia326/327: 75-82.
7. Colorni, A. 1989. Perforation disease affecting Ulva sp. cultured in Israel on the Red Sea. Dis. Aquat. Org. 7: 71-73.
8. Craigie, J. S., Shacklock, P. F. 1989. Culture of Irish moss. In: Boghen, A. D., ed. Cold water aquaculture in Atlantic Canada. Canadian Institute for Research on Regional Development, Moncton, Canada, pp. 243-270.
9. Dawes, C. J., Teasdale, B. W., Friedlander, M. 2000. Cell wall structure of the agarophytes G. tikvahiae and G. cornea and penetration by the epiphyte Ulva lactuca. J. Appl. Phycol. 12: 567-575.
10. DeBusk, T. A., Ryther, J. H. 1984. Effects of seawater exchange, pH and carbon supply on the growth of G. tikvahiae in large scale cultures. Bot. Mar. 27: 357-362.
11. Drechsler, Z., Beer, S. 1991. Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97: 1439-1444.
12. Drechsler, Z., Sharkia, R., Cabantchik, Z. I. 1993. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191: 34-40.
13. Friedlander, M. 1991. Growth rate, epiphyte biomass and agar yield of G. conferta in an annual outdoor experiment. 1. Irradiance and nitrogen. Bioresource Technol. 38: 203-208.
14. Friedlander, M. 1992. Gracilaria conferta and its epiphytes. The effect of culture conditions on growth. Bot. Mar. 35: 423-428.
15. Friedlander, M. 2001. Inorganic nutrition in pond cultivated Gracilaria conferta: nitrogen, phosphate and sulfate. J. Appl. Phycol. 13: 279-286.
16. Friedlander, M., Ben-Amotz, A. 1990. Acclimation of brown seaweeds in an outdoor cultivation system and their cytokinin-like activity. J. Appl. Phycol. 2: 145-154.
17. Friedlander, M., Ben-Amotz, A. 1991. The effect of outdoor culture conditions on growth and epiphytes of G. conferta. Aquat. Bot. 39: 315-333.
18. Friedlander, M., Gunkel, W. 1992. Factors leading to thallus disintegration and the control of these factors in Gracilaria sp. In: Moav, B., Hilge, V., Rosenthal, H., eds. Proc. 4th German-Israeli Status Seminar. EAS Spec. Publ. No. 17, Oostende, Belgium, pp. 221-243.
19. Friedlander, M., Levy, I. 1995. Cultivation of Gracilaria in outdoor tanks and ponds. J. Appl. Phycol. 7: 315-324.
20. Friedlander, M., Zelikovitch, N. 1984. Growth rates, pycocolloid yield and quality of the red seaweeds, Gracilaria sp., Pterocladia capillacea, Hypnea musciformis, and Hypnea cornuta, in field studies in Israel. Aquaculture 40: 57-66.
21. Friedlander, M., Krom, M. D., Ben-Amotz, A. 1991. The effect of light and ammonium on growth, epiphytes and chemical constituents of Gracilaria conferta in outdoor cultures. Bot. Mar. 34: 161-166.
22. Friedlander, M., Levy, D., Hornung, H. 1996. The effect of cooling seawater effluents of a power plant on growth rate of cultured Gracilaria conferta. Hydrobiologia 332: 167-174.
23. Friedlander, M., Weintraub, N., Freedman A., Sheer, J., Snovsky, Z., Shapiro, J., Kissil, G. W. 1996a. Fish as potential biocontrollers of Gracilaria culture. Aquaculture 145: 113-118.
24. Friedlander, M., Kashman, Y., Weinberger, F., Dawes, C. J. 2001. Gracilaria and its epiphytes: 4. The response of two Gracilaria species to Ulva lactuca in a bacteria limited environment. J. Appl. Phycol. 13: 501-507.
25. Friedlander, M., Kosov, Y., Keret, G., Dawes, C. 2006. Production of rhizoids by Caulerpa prolifera in culture. Aquat. Bot. 85: 263-266.
26. Gal-Or, S., Israel, A. 2004. Growth responses of Pterocladiella capillacea in laboratory and outdoor cultivation. J. Appl. Phycol. 16: 195-202.
27. Gonen, Y., Kimmel, E., Friedlander, M. 1994. Attenuation of water velocity and incident light as a function of shape parameters in Gracilaria. J. Appl. Phycol. 6: 381-390.
28. Guerin, J. M., Bird, K. T. 1987. Effects of aeration period on the productivity and agar quality of Gracilaria sp. Aquaculture 64: 105-110.
29. Guist, G. G., Dawes, C. J., Castle, J. R. 1982. Mariculture of the red seaweed Hypnea musciformis. Aquaculture 28: 375-384.
30. Haglund, K., Pedersen, M. 1992. Growth of the red alga G. tenuistipitata at high pH. Influence of some environmental factors and correlation to an increased carbonic anhydrase activity. Bot. Mar. 35: 579-589.
31. Haglund, K., Pedersen, M. 1993. Outdoor pond cultivation of subtropical marine red alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and epiphyte control. J. Appl. Phycol. 5: 271-284.
32. Haglund, K., Bjork, M., Ramazanov, Z., Garcia-Reina, G., Pedersen, M. 1992. Role of carbonic anhydrase in photo-synthesis and inorganic carbon assimilation in the red alga G. tenuistipitata. Planta 187: 275-281.
33. Hanisak, M. D. 1987. Cultivation of Gracilaria and other macroalgae in Florida for energy production. In: Bird, K. T., Benson, P. H., eds. Seaweed cultivation for renewable resources. Elsevier, Amsterdam, pp. 191-218.
34. Hanisak, M. D., Ryther, J. H. 1984. Cultivation biology of Gracilaria tikvahiae in the US. Hydrobiologia116/117: 295-298.
35. Israel, A., Beer, S. 1992. Photosynthetic carbon acquisition in the red alga Gracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO3 - uptake. Mar. Biol. 112: 697-700.
36. Israel, A., Friedlander, M. 1998. Inorganic carbon utilization and growth abilities in the marine red macroalga Gelidiopsis sp. Isr. J. Plant Sci. 46: 117-124.
37. Israel, A., Beer, S., Bowes, G. 1991. Photosynthetic carbon acquisition in the red alga Gracilaria conferta. I. Gas exchange properties and the fixation pathway. Mar. Biol. 110: 195-198.
38. Israel, A., Friedlander, M., Neori, A. 1995. Biomass, yield, photosynthesis and morphological expression of Ulva lactuca. Bot. Mar. 38: 297-302.
39. Israel, A., Martinez-Goss, M., Friedlander, M. 1999a. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. J. Appl. Phycol. 11: 543-549.
40. Israel, A., Katz, S., Dubinsky, Z., Merrill, J. E., Friedlander, M. 1999b. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis. J. Appl. Phycol. 11: 447-453.
41. Israel, A., Gavrieli, J., Glazer, A., Friedlander, M. 2005. Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture 249: 311-316.
42. Israel, A., Levy, I., Friedlander, M. 2006. Experimental tank cultivation of Porphyra in Israel. J. Appl. Phycol. 18: 235-240.
43. Katz, S., Kizner, Z., Dubinsky, Z., Friedlander, M. 2000. Responses of Porphyra linearis to environmental factors under controlled culture conditions. J. Appl. Phycol. 12: 535-542.
44. Lapointe, B. E., Ryther, J. H. 1978. Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15: 185-193.
45. Lapointe, B. E., Duke, C. S. 1984. Biochemical strategies for growth of G. tikvahiae in relation to light intensity and nitrogen availability. J. Phycol. 20: 488-495.
46. Levi, B., Friedlander, M. 2004. Identification of two putative adhesive polypeptides in Caulerpa prolifera rhizoids using an adhesion model system. J. Appl. Phycol. 16: 1-9.
47. Levy, I., Friedlander, M. 1994. Seasonal growth activity of local and foreign gracilarioid strains in Israel. J. Appl. Phycol. 6: 447-454.
48. Levy, I., Beer, S., Friedlander, M. 1990. Strain selection in Gracilaria spp. 2. Selection for high and low temperature resistance in Gracilaria sporelings. J. Appl. Phycol. 2: 163-171.
49. Lignell, A., Pedersen, M. 1987. Nitrogen metabolism in G. secundata. Hydrobiologia151/152: 431-441.
50. Lignell, A., Ekman, P., Pedersen, M. 1987. Cultivation technique for marine seaweeds allowing controlled and optimized conditions in the laboratory and on a pilot scale. Bot. Mar. 30: 417-424.
51. Lipkin, Y., Beer, S., Eshel, A. 1993. The ability of Porphyra linearis to tolerate prolonged periods of desiccation. Bot. Mar. 93: 517-523.
52. Neori, A., Cohen, I., Gordin, H. 1991. Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C: N ratio. Bot. Mar. 34: 483-489.
53. Neori, A., Ragg, N. L. C., Shpigel, M. 1998. The integrated culture of seaweed, abalone, fish and clams in modular intensive land based systems: II. Performance and nitrogen partitioning within an abalone and macroalgae culture system. Aquacult. Eng. 17: 215-239.
54. Neori, A., Msuya, F. E., Shauli, L., Schuenhoff, A., Kopel, F., Shpigel, M. 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J. Appl. Phycol. 15: 543-553.
55. Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shpigel, M., Yarish, C. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231: 361-391.
56. Neori, A., Troell, M., Chopin, T., Yarish, C., Critchley, A., Buschmann, A. H. 2007. The need for a balanced ecosystem approach to blue revolution aquaculture. Environment 49: 36-43.
57. Ryther, J. H., Corwin, N., DeBusk, T. A., Williams, L. D. 1981. Nitrogen uptake and storage by the red alga G. tikvahiae. Aquaculture 26: 107-115.
58. Schramm, W. 1991. Cultivation of unattached seaweeds. In: Guiry, M. D., Blunder, G., eds. Seaweed resources in Europe, uses and potential. John Wiley and Sons, Chichester, pp. 379-408.
59. Schuenhoff, A., Shpigel, M., Lupatsch, I., Ashkenazi, A., Msuya, F. E., Neori, A. 2003. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221: 167-181.
60. Shpigel, M., Neori, A., Popper, D. M., Gordin, H. 1993. A proposed model for "environmentally clean" land based culture of fish, bivalves and seaweeds. Aquaculture 117: 115-128.
61. Troell, M., Neori, A., Chopin, T., Buschmann, A. H. 2005. Biological wastewater treatment in aquaculture—more than just bacteria. World Aquacult. 28: 27-29.
62. Ugarte, R., Santelices, B. 1992. Experimental tank cultivation of Gracilaria chilensis in central Chile. Aquacul. 101: 7-16.
63. Weinberger, F., Friedlander, M. 2000. Response of Gracilaria conferta to oligoagars results in defense against agar degrading epiphytes. J. Phycol. 36: 1079-1086.
64. Weinberger, F., Hoppe, H-G., Friedlander, M. 1997. Bacterial induction and inhibition of a fast necrotic response in Gracilaria conferta. J. Appl. Phycol. 9: 277-285.
65. Westermeier, R., Gomez, I., Rivera, P. 1993. Suspended farming of G. chilensis at Cariquilda river, Maullin, Chile. Aquaculture 113: 215-229.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation