Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Quantum yields of phytoplankton photosynthesis in the Gulf of Aqaba (Elat), Northern Red Sea

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The Gulf of Aqaba (Elat) is characterized by oligotrophic waters and low productivity conditions in summer, when the euphotic zone of the stratified water column is severely nutrient-depleted. Winter is moderately productive, when mixing injects nutrients into the lit upper waters. The annual phytoplankton cycle and the bathymetric distribution of biomass and photosynthetic activity in the Gulf are analyzed in conjunction with the harvesting and utilization of light by cells. The harvesting of light energy at any depth is shown as an interaction between the optical properties of cells, a*, and the intensity and spectral distribution of the underwater light field. The efficiency by which phytoplankton cells utilize the absorbed light energy is the quantum yield of the photosynthetic process, Φ. The efficiency of light utilization by phytoplankton depends on the nutrient status of cells, their photoacclimation to ambient light, and the irradiance to which they are exposed. We show that the seasonal and spatial changes in the quantum yield of photosynthesis control the wax and wane of the different phytoplankton assemblages in the Gulf, thereby ultimately determining the flux of energy fueling all of the Gulf's planktonic and benthic biota.

Affiliations: 1: The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University iluzda@mail.biu.ac.il ; 2: Department of Geography, Bar-Ilan University ; 3: Department of Environmental Science and Agriculture, Beit Berl College ; 4: The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University

10.1560/IJPS.56.1-2.29
/content/journals/10.1560/ijps.56.1-2.29
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps.56.1-2.29
Loading

Data & Media loading...

1. Al-Qutob, M. 2001. Nutrient distributions and dynamics in the Gulf of Eilat (Aqaba), Red Sea. Ph.D. thesis, Bar-Ilan Univ., Israel.
2. Al-Qutob, M., Hase, C., Tilzer, M. M., Lazar, B. 2002. Phytoplankton drives nitrite dynamics in the Gulf of Aqaba, Red Sea. Mar. Ecol. Prog. Ser. 239: 233-239.
3. Assaf, G., Kessler, J. 1976. Climate and energy exchange in Gulf of Aqaba (Eilat). Monthly Weather Review 104: 381-385.
4. Berger, W. H., Smetacek, V. S., Wefer, G. 1989. Ocean productivity and paleoproductivity: an overview. In: Berger, W. H., Smetacek, V. S., Wefer, G., eds. Productivity of the oceans: present and past. Wiley and Sons, New York, pp. 1-34.
5. Berman, T., Paldor, N., Brenner, S. 2003. Annual SST cycle in the Eastern Mediterranean, Red Sea and Gulf of Elat. Geophys. Res. Lett. 30: Art. No. 1261.
6. Chase, Z., Paytan, A., Johnson, K. S., Street, J., Chen, Y. 2006. Input and cycling of iron in the Gulf of Aqaba, Red Sea. Global Biogeochem. Cycles 20: Art. No. GB3017.
7. Cleveland, J. S., Perry, M. J., Kiefer, D. A., Talbot, M. C. 1989. Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea. J. Mar. Res. 47: 869-886.
8. Droop, M. R. 1983. 25 years of algal growth kinetics, a personal view. Bot. Mar. 26: 99-112.
9. Dubinsky, Z. 1980. Light utilization efficiency in natural phytoplankton communities. In: Falkowski, P. G., ed. Primary productivity in the sea. Plenum Press, New York, pp. 83-97.
10. Dubinsky, Z. 1992. The functional and optical absorption cross-sections of phytoplankton photosynthesis. In: Falkowski, P. G., Woodhead, A. D., eds. Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp. 31-45.
11. Dubinsky, Z., Berman-Frank, I. 2001. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquat. Sci. 63: 4-17.
12. Dubinsky, Z., Berman, T. 1981. Light utilization by phytoplankton in Lake Kinneret (Israel). Limnol. Oceanogr. 26: 660-670.
13. Dubinsky, Z., Berman, T., Schanz, F. 1984. Field experiments for in situ measurement of photosynthetic efficiency and quantum yield. J. Plankton Res. 6: 339-349.
14. Dubinsky, Z., Falkowski, P. G., Wyman, K. 1986. Light harvesting and utilization in phytoplankton. Plant Cell Physiol. 27: 1335-1349.
15. Falkowski, P. 1991. Species variability in the fractionation of 13C and 12C by marine phytoplankton. J. Plankton Res. 13: 21-28.
16. Falkowski, P. G., Wirick, C. D. 1981. A simulation—model of the effects of vertical mixing on primary production. Mar. Biol. 65: 69-75.
17. Falkowski, P. G., Jokiel, P. L., Kinzie, R. A. 1990. Irradiance and corals. In: Dubinsky, Z., ed. Coral reefs. Ecosystems of the world. Elsevier Science Publishers, Amsterdam, pp. 89-107.
18. Fuller, N. J., West, N. J., Marie, D., Yallop, M., Rivlin, T., Post, A. F., Scanlan, D. J. 2005. Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol. Oceanogr. 50: 363-375.
19. Genin, A., Lazar, B., Brenner, S. 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377: 507-510.
20. Greene, R. M., Geider, R. J., Falkowski, P. G. 1991. Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782.
21. Iluz, D. 1991. Primary production of phytoplankton in the northern Gulf of Eilat, Red Sea. M. Sc. thesis, Bar-Ilan Univ., Israel (in Hebrew, English abstr.).
22. Iluz, D. 1997. The light field, phytoplankton pigmentation and productivity in the Gulf of Eilat. Ph.D. thesis, Bar-Ilan Univ., Israel (in Hebrew, English abstr.).
23. Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd ed. Cambridge University Press, London, New York.
24. Kishino, M., Takahashi, M., Okami, N., Ichimura, S. 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 37: 634-642.
25. Kolber, Z., Zehr, J., Falkowski, P. G. 1988. Effect of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol. 88: 923-929.
26. Kolber, Z., Wyman, K. D., Falkowski, P. G. 1990. Natural variability in photosynthetic energy conversion efficiency: a study in the Gulf of Maine. Limnol. Oceanogr. 35: 72-79.
27. Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G., van Dijken, G. 2003. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48: 2355-2368.
28. Lazar, B., Erez, J. 1992. Carbon geochemistry of marine derived brines: I. 13C depletions due to intense photosynthesis. Geochim. Cosmochim. Acta 56: 335-345.
29. Levanon-Spanier, L., Padan, E., Reiss, Z. 1979. Primary production in desert-enclosed sea the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res. 26: 673-685.
30. Lindell, D., Post, A. F. 1995. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40: 1130-1141.
31. Monismith, S. G., Genin, A. 2004. Tides and sea level in the Gulf of Aqaba (Eilat). J. Geophys. Res.—Oceans 109 Art. No. C04015: 1-6.
32. Morel, A. 1978. Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25: 673-688.
33. Post, A. F., Veldhuis, M., Lindell, D. 1996. Spatial and temporal distribution of ultraphytoplankton in the Gulf of Aqaba, Red Sea. J. Phycol. Suppl. 32 38-39.
34. Prezelin, B. B., Bidigare, R. R., Matlick, H. A., Putt, M., Hoven, B. V. 1987. Diurnal patterns of size fractioned primary productivity across a coastal front. Mar. Biol. 96: 563-574.
35. Prezelin, B. B., Tilzer, M. M., Schofield, O., Haese, C. 1991. The control of the production process of phytoplankton by the physical structure of the aquatic environment with special reference to its optical properties. Aquat. Sci. 53: 136-186.
36. Reiss, Z. S., Hottinger, L., eds. 1984. The Gulf of Aqaba. Ecological Micropaleontology. Springer Verlag, Berlin.
37. Schanz, F., Dubinsky, Z. 1988. The afternoon depression in primary productivity in a high rate oxidation pond (Hrop). J. Plankton Res. 10: 373-383.
38. Schlichter, D., Fricke, H. W. 1991. Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragili.Hydrobiologia 216: 389-394.
39. Schofield, O., Prezelin, B. B., Smith, R. C., Stegmann, P. M., Nelson, N. B., Lewis, M. R., Baker, K. S. 1991. Variability in spectral and nonspectral measurements of photosynthetic light utilization efficiencies. Mar. Ecol. Prog. Ser. 78: 253-271.
40. Sokoletsky, L., Dubinsky, Z., Shoshany, M., Stambler, N. 2003. Estimation of phytoplankton pigment concentration in the Gulf of Aqaba (Eilat) by in situ and remote sensing single-wavelength algorithms. Int. J. Remote Sens. 24: 5049-5073.
41. Sokoletsky, L., Dubinsky, Z., Shoshany, M., Stambler, N. 2004. Single-wavelength algorithms for in situ or remote sensing estimation of mean pigment concentration. Int. J. Remote Sens. 25: 1517-1525.
42. Stambler, N. 2006. Light and picophytoplankton in the Gulf of Eilat (Aqaba). J. Geophys. Res.—Oceans 111: (C11): Art. No. C11009.
43. Steemann-Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Perm. Int. Explor. Mer. 18: 117-140.
44. Steeman-Nielsen, E. 1975. Marine photosynthesis with special emphasis on the ecological applications. Elsevier Oceanogr. 131: 109-119.
45. Strickland, J. D. H., Parsons, T. R. 1968. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167, 311 pp.
46. Tilzer, M. M. 1984. Seasonal and diurnal of photosynthetic quantum yields in the phytoplankton of Lake Constance. Verh. Int. Verein. Limnol. 22: 958-962.
47. Walsby, A. E., Dubinsky, Z., Kromkamp, J. C., Lehmann, C., Schanz, F. 2001. The effects of diel changes in photosynthetic coefficients and depth of Planktothrix rubescens on the daily integral of photosynthesis in Lake Zurich. Aquat. Sci. 63: 326-349.
48. Wolf-Vecht, A., Paldor, N., Brenner, N. 1992. Hydrographic indications of advection/convection effects in the Gulf of Eilat. Deep-Sea Res. 39: 1393-1401.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps.56.1-2.29
Loading

Article metrics loading...

/content/journals/10.1560/ijps.56.1-2.29
2008-05-13
2018-06-23

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation