Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Acidification and CO2 production in the boundary layer during photosynthesis in Ulva rigida (Chlorophyta) C. Agardh

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Mechanisms of inorganic carbon utilization (i.e., carbon-concentrating mechanisms) in seaweeds involve uptake of HCO3 - and carbonic anhydrase-mediated production of CO2. These mechanisms are needed to cope with the low concentrations of CO2 dissolved in seawater and the low affinities of Rubisco for CO2 in the macroalgal chloroplasts. The current study shows, for the first time, direct evidence that while Ulva rigida photosynthesizes there is continuous production of CO2, apparently generated from an acidification process in its boundary layer. Release of CO2 during light periods was measured using a membrane inlet mass spectrometer, while acidification at the boundary layer was detected in pH-drift experiments. Under repetitive light (4, 70, 300 μmol photons m-2 s-1) and dark cycles, O2 production rates exceeded by 10-fold that of CO2 production under illumination. Photosynthetic release of O2 was largely dependent on the experimental range of light intensities, while CO2 evolution under illumination was significantly reduced at 24 °C as compare to 15 °C. Rapid acidification occuring within the unstirred layer and the consequent CO2 release may account for an additional mechanism of inorganic carbon utilization strategies in Ulva rigida, which previously had been reported to posses an efficient carbonic anhydrase modulated carbon concentrating mechanism.

Affiliations: 1: Department of Plant Environmental Sciences, The Hebrew University of Jerusalem ; 2: National Institute of Oceanography, Israel Oceanographic and Limnological Research


Full text loading...


Data & Media loading...

1. Andria, J. R., Vergara, J. J., Perez-Llorens, J. L. 1999. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur. J. Phycol. 34: 497-504.
2. Axelsson, L., Uusitalo, J. 1988. Carbon acquisition strategies for marine macroalgae. I. utilization of proton exchanges visualized during photosynthesis in a closed system. Mar. Biol. 97: 295-300.
3. Axelsson, L., Ryberg, H., Beer, S. 1995. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca.Plant, Cell Environ. 18: 439-445.
4. Axelsson, L., Larsson, C., Ryberg, H. 1999. Affinity, capacity and oxygen sensitivity of two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant, Cell Environ. 22: 969-978.
5. Badger, M. R., Price, G. D. 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 369-392.
6. Bates, N. R. 2002. Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange. Limnol. Oceanogr. 47: 43-52.
7. Beer, S. 1994. Mechanisms of inorganic carbon acquisition in marine macroalgae. In: Round, F. E., Chapman, D. J., eds. Progress in photosynthetic research. Bipress, Bristol, pp. 179-207.
8. Beer, S. 1996. Photosynthetic utilisation of inorganic carbon in Ulva.Sci. Mar. 60: 125-128.
9. Beer, S., Israel, A. 1990. Photosynthesis of Ulva lactuca. IV. pH, carbonic anhydrase, and inorganic carbon conversions in the unstirred layer. Plant Cell Environ. 13: 555-560.
10. Bjork, M., Haglund, K., Ramazanov, Z., Pedersen, M. 1993. Inducible mechanisms for bicarbonate utilization and repression of photorespiration in protoplasts and thalli of three species of Ulva (Chlorophyta). J. Phycol. 29: 166-173.
11. Burkhardt, S., Amoroso, G., Riebesell, U., Sultemeyer, D. 2001. CO2 and HCO3 - uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr. 46: 1378-1391.
12. Colman, B., Huertas, I. E., Bhatti, S., Dason, J. S. 2002. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct. Plant. Biol. 29: 261-270.
13. Deveau, J. S. T., Khosravani, H., Lew, R. R., Colman, B. 1998. CO2 uptake mechanism in Eremosphaera viridis.Can. J. Bot. 76: 1161-1164.
14. Drechsler, Z., Sharkia, R., Cabantchik, Z. I., Beer, S. 1993. Bicarbonate uptake in the marine macroalgae Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191: 34-40.
15. Falkowski, P. G., Raven, J. 1997. Aquatic photosynthesis. Blackwell Scientific, Oxford.
16. Gattuso, J. P., Buddemeier, R. W. 2000. Ocean biochemistry: calcification and CO2. Nature 407: 311-313.
17. Giordano, M., Beardall, J., Raven, J. A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu. Rev. Plant Biol. 56: 99-131.
18. Holbrook, G. P., Beer, S., Spencer, W. E., Reiskind, J., Davis, J. S., Bowes, G. 1988. Photosynthesis in marine macroalgae. Evidence for carbon limitation. Can. J. Bot. 66: 577-582.
19. Huertas, I. E., Espie, G. S., Colman, B., Lubian, L. M. 2000. Lightdependent bicarbonate uptake and CO2 efflux in the marine microalga Nannochloropsis gaditiana.Planta 211: 43-49.
20. Israel, A., Beer, S. 1992. Photosynthetic carbon acquisition in the red alga Gracilaria conferta. II. Rubisco carboxylase kinetics, carbonic anhydrase and HCO3 - uptake. Mar. Biol. 112: 697-700.
21. Israel, A., Hophy, M. 2002. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Global Change Biol. 8: 831-840.
22. Johnston, A. M., Maberly, S. C., Raven, J. A. 1992. The acquisiton of inorganic carbon by four red macroalgae. Oecologia 92: 317-326.
23. Kaplan, A., Reinhold, L. 1999. The CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 539-570.
24. Kaplan, A., Lerner, M., Scherer, S. 1989. Nature of the light induced H+ efflux and Na+ uptake in cyanobacteria. Plant Physiol. 89: 1220-1225.
25. Larsson, C., Axelsson, L., Ryberg, H., Beer, S. 1997. Photosynthetic carbon utilization in Enteromorpha intestinalis (Chlorophyta) from a Swedish rockpool. Eur. J. Phycol. 32: 49-54.
26. Maberly, S. C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26: 439-449.
27. Moroney, J. V., Somanchi, A. 1999. How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation. Plant Physiol. 119: 9-16.
28. Ogawa, T., Kaplan, A. 2003. Inorganoc carbon acquisition systems in cyanobacteria. Photosynth. Res. 77: 105-115.
29. Price, G. D., Klughammer, B., Ludwig, M., Badger, M. R. 1998. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins and recent advances. Can. J. Bot. 76: 973-1002.
30. Provasoli, L. 1968. Media and prospects for cultivation of marine algae. In: Watanabe, A., Gattori, A., eds. Culture and collection of algae. Proc. U. S. Japan Conf., Hakonte. Jap. Soc. Plant Physiol: 63-75.
31. Raven, J. A. 1997. CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ. 20: 147-154.
32. Raven, J. A. 2003. Inorganic carbon concentrating mechanisms in relation to the biology of algae. Photosynth. Res. 77: 155-171.
33. Ray, S., Klenell, M., Choo, K. S., Pedersen, M., Snoeijs, P. 2003. Carbon acquisition mechanisms in Chara tomentosa.Aqua. Bot. 76: 141-154.
34. Riebesell, U., Zondervan, I., Rost, B., Tortell, P. D., Zeebe, R. E., Morel, F. M. M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364-367.
35. Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M. Fukuzawa, H., Kaplan, A., Ogawa, T. 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J. Biol. Chem. 277: 18568-18664.
36. Smith, R. G., Bidwell, R. G. S. 1989. Mechanisms of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus.Plant Physiol. 89: 93-99.
37. Spalding, M. H. 1998. CO2 acquisition: acclimation to changing carbon availability. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 529-547.
38. Sukenik, A., Tchernov, D., Kaplan, A., Huertas, E., Lubian, L. M., Livne, A. 1997. Uptake, efflux, and photosynthetic utilization of inorganic carbon by the marine Eustigmatophyte Nannochloropsis sp. J. Phycol. 33: 969-974.
39. Tchernov, D., Hassidim, M., Luz, B., Sukenik, A., Reinhold, L., Kaplan, A. 1997. Sustained net CO2 evolution during photosynthesis by marine microorganisms. Curr. Biol. 7: 723-728.
40. Tchernov, D., Silverman, J., Luz, B., Reinhold, L., Kaplan, A. 2003. Massive light-dependent cycling of inorganic carbon between photosynthetic microorganisms and their surroundings. Photosynth. Res. 77: 95-103.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation