Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Gametophytic Self-Incompatibility system, its impact on pear (Pyrus communis L.) cultivation, and the utilization of the wild Syrian pear (Pyrus syriaca) as a "universal pollinator";

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The current understanding of the RNase-mediated Gametophytic Self-Incompatibility (GSI) system in pears is presented. A practical outcome of GSI research is the ability to S-genotype cultivars molecularly. In Israel the main pear cultivar is ‘Spadona’; ‘Cocsia’, ‘Gentile,’ and ‘Spadochina’ serve as its pollenizers. However, yields are relatively low, probably, at least in part, because of genetic semi-compatibility, which causes rejection of half of the pollen grains that reach the ‘Spadona’ flowers. The wild pear Pyrus syriaca, which is endemic to Israel, flowers in parallel to the cultivated European pear varieties, and is expected to be compatible with them. We are currently examining P. syriaca trees in the northern part of Israel, to see if they could serve as efficient pollenizers for the cultivated pears in Israeli orchards.

Affiliations: 1: Department of Molecular Genetics and Northern R&D, MIGAL–Galilee Technology Center ; 2: Dept. of Horticulture, Faculty of Agriculture, The Hebrew University of Jerusalem ; 3: Department of Molecular Genetics and Northern R&D, MIGAL–Galilee Technology Center


Full text loading...


Data & Media loading...

1. Anderson, M.A., Cornish, E.C., Mau, S.L., Williams, E.G., Hoggart, R., Atkins, A., Bonig, I., Clarke, A.E. 1986. Cloning of cDNA for a styler glycoprotein associated with expression of self-incompatibility in Nicotiana alata.Nature 321: 38-44.
2. Beppu, K., Yamane, H., Yaegaki, H., Yamaguchi, M., Kataoka, I., Tao, R. 2002. Diversity of S-RNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl.). J. Hortic. Sci. Biotechnol. 77: 658-664.
3. Boskovic, R., Tobutt, K.R. 1999. Correlation of stylar ribonuclease isoenzymes with incompatibility alleles in almond. Euphytica 107: 29-43.
4. Callan, N.W., Lombard, P.B. 1978. Pollination effects on fruit set and seed development in ‘Comice’ pear. J. Am. Soc. Hortic. Sci. 103: 496-500.
5. Entani, T., Iwano, M., Shiba, H., Che, F.S., Isogai, A., Takayama, S. 2003. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8: 203-213.
6. Goldraij, A., Kondo, K., Lee, C.B., Hancock, C.N., Sivaguru, M., Vazquez-Santana, S., Kim, S., Phillips, T.E., Cruz-Garcia, F., McClure, B. 2006. Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana.Nature 439: 805-810.
7. Goldway, M., Shai, O., Yehuda, H., Matityahu, A. and Stern, R.A. 1999. ‘Jonathan’ apple is a lower-potency pollenizer of ‘Topred’ than ‘Golden Delicious’ due to partial S-allele incompatibility.). J. Hortic. Sci. Biotechnol. 74: 381-385.
8. Goldway, M., Sapir, G., Stern, R.A. 2007. Molecular basis and horticultural application of the gametophytic self-incompatibility system in rosaceous tree fruits. In: Janeck, J., ed. Plant breed reviews. John Wiley & Sons, New Jersey, Vol. 28, pp. 215-237.
9. Griggs, W.H., Iwakiri, B.T. 1954. Pollination and parthenocarpy in production of ‘Barlett’ pears in California. Hilgardia 22: 643-678.
10. Hancock, C.N., Kim, D., McClure, B.A. 2005a. Stylar glycoproteins bind to S-RNase in vitro. Plant J. 42: 295-304.
11. Hancock, C.N., Kent, L., McClure, B.A. 2005b. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana.Plant J. 43: 716-723.
12. Hua, Z., Meng, X., Kao, T.H. 2007. Comparison of Petunia inflata S-Locus F-Box Protein (Pi SLF) with Pi SLF like proteins reveals its unique function in S-RNase based selfincompatibility. Plant Cell, Nov 16; [Epub ahead of print].
13. Ikeda, K., Watari, A., Ushijima, K., Yamane, H., Hauck, N.R., Iezzoni, A.F., Tao, R. 2004. Molecular markers for the self compatible S4-haplotype, a pollen part mutation in sweet cherry (Prunus avium L.). J. Am. Soc. Hortic. Sci. 129: 724-728.
14. Ishimizu, T., Shinkawa, T., Sakiyama, F., Norioka, S. 1998. Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility. Plant Mol. Biol. 37: 931-941.
15. Ishimizu, T., Inoue, K., Shimonaka, M., Saito, T., Terai, O., Norioka, S. 1999. PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theor. Appl. Genet. 98: 961-967.
16. Kao, T.H., Tsukamoto, T. 2004. The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16: S72-83.
17. Kakui, H., Tsuzuki, T., Koba, T., Sassa, H. 2007. Polymorphism of SFBB-gamma and its use for S genotyping in Japanese pear (Pyrus pyrifolia). Plant Cell Reprod. 26: 1619-25.
18. Lai, Z., Ma, W., Han, B., Liang, L., Zhang, Y., Hong, G., Xue, Y. 2002. An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol. Biol. 50: 29-42.
19. Luu, D., Qin, X., Morse, D., Cappadocia, M. 2000. S-RNase uptake by compatible pollen tubes in gametophytic selfincompatibility. Nature 407: 649-651.
20. McClure, B.A. 2004. S-RNase and SLF determine S-haplotype-specific pollen recognition and rejection. Plant Cell 16: 2840-2847.
21. McClure, B.A., Franklin-Tong, V. 2006. Gametophytic selfincompatibility: understanding the cellular mechanisms involved in "self" pollen tube inhibition. Planta 224: 233-245.
22. McClure, B.A., Haring, V., Ebert, P.R., Anderson, M.A., Simpson, R.J., Sakiyama, F., Clarke, A.E., 1989. Style self-incompatibility gene products of Nicotiana alata are ribonuclease. Nature 342: 955-957.
23. McClure, B.A., Gray, J.E., Anderson, M.A., Clarke, A.E. 1990. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature. 347: 757-760.
24. McCubbin, A.G., Kao, T.H. 2000. Molecular recognition and response in pollen and pistil interactions. Annu. Rev. Cell Dev. Biol. 16: 333-364.
25. Moriya, Y., Yamamoto, K., Okada, K., Iwanami, H., Bessho, H., Nakanishi, T., Takasaki, T. 2007. Development of a CAPS marker system for genotyping European pear cultivars harboring 17 alleles. Plant Cell Reprod. 26: 345-354.
26. Qiao, H., Wang, H., Zhao, L., Zhou, J., Huang, J., Zhang, Y., Xue, Y. 2004. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum.Plant Cell 16: 571-581.
27. Sanzol, J., Herrero, M. 2007. Self incompatibility and self fruitfulness in pear cv. Agua de Arajues. J. Am. Soc. Hortic. Sci. 132: 166-171.
28. Sassa, H., Hirano, H., Ikehashi, H. 1992. Self-incompatibilityrelated RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol. 33: 811-814.
29. Sassa, H., Hirano, H., Nishio, T., Koba, T. 1997. Style-specific self-compatible mutation caused by deletion of the S-RNase gene in Japanese pear (Pyrus serotina). Plant J. 12: 223-227.
30. Sassa, H., Kakui, H., Miyamoto, M., Suzuki, Y., Hanada, T., Ushijima, K., Kusaba, M., Hirano, H., Koba, T. 2007. S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175: 1869-1881.
31. Schneider, D., Stern, A.R., Goldway, M. 2005. A comparison between semi and fully compatible apple pollinators grown under sub optimal condition. HortScience 40: 1280-1282.
32. Stern, R.A., Dag, A., Eisikowitch, D. 2001. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76: 17-23.
33. Stern, R.A., Dag, A., Zisovich, A., Shafir, S., Goldway, M. 2004. Sequential introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Spadona’ pear (Pyrus communis L.). J. Hortic. Sci. Biotechnol. 79: 652-658.
34. Stern, R.A., Zisovich, A., Goldway, M. 2007. Increasing fertility and fruit size of ‘Spadona’ and ‘Coscia’ pear by improving pollination and fertilization with better pollinators (bumble bees) and pollenizers (new cultivars). Annual report to the chief scientist of the Israeli Ministry of Agriculture (in Hebrew).
35. Takasaki, T., Moriya, Y., Okada, K., Yamamoto, K., Iwanami, H., Bessho, H., Nakanishi, T. 2006. cDNA cloning of nine S-alleles and the establishment of a PCR-RFLP system for genotyping European pear cultivars. Theor. Appl. Gene. 112: 1543-1552.
36. Takayama, S., Isogai, A. 2005. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56: 467-489.
37. Ushijima, K., Sassa, H., Dandekar, A.M., Gradziel, T.M., Tao, R., Hirano, H. 2003. Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15: 771-781.
38. Ushijima, K., Yamane, H., Watari, A., Kakehi, E., Ikeda, K., Hauck, N.R., Iezzoni, A.F., Tao, R. 2004. The S haplotypespecific F-box protein gene, SFB, is defective in self-compatible haplotypes of Prunus avium and P. mume.Plant J. 39: 573-586.
39. Vasilakakis, M.D., Porlingis, I.C. 1985. Effect of temperature on pollen germination, pollen tube growth, effective pollination period and fruit set of pear. HortScience 20: 733-735.
40. Vilanova, S., Badenes, M.L., Burgos, L., Martínez-Calvo, J., Llácer, G., Romero, C. 2006. Self-compatibility of two apricot selections is associated with two pollen-part mutations of different nature. Plant Physiol. 142: 629-641.
41. Weissman, A.M. 2001. Themes and variations on ubiquitynation. Nat. Rev. Mol. Cell Biol. 2: 169-178.
42. Westwood, N.M. 1993. Temperate zone pomology: physiology and culture. 3rd ed. Timber Press, Portland, Oregon.
43. Xue, Y., Carpenter, R., Dickinson, H.G., Coen, E.S. 1996. Origin of allelic diversity in antirrhinumS-locus RNases.Plant Cell 8: 805-814.
44. Yamane, H., Tao, R., Murayama, H., Sugiura, A. 2000. Determining the S-genotype of several sweet cherry cultivars based on PCR/RFLP analysis. J. Hortic. Sci. Biotechnol. 75: 562-567.
45. Yamane, H., Ikeda, K., Ushijima, K., Sassa, H., Tao, R. 2003a. A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium.Plant Cell Physiol. 44: 764-769.
46. Yamane, H., Ushijima, K., Sassa, H., Tao, R. 2003b. The use of S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotype and self-compatibility in Japanese apricot (Prunus mume). Theor. Appl. Gene. 107: 1357-1361.
47. Zhang, S.L., Hiratsuka, S. 2000. Cultivar and developmental differences in S-protein concentration and self-incompatibility in the Japanese pear. HortScience 35: 917-920.
48. Zisovich, A., Stern, A.R., Shafir, S., Goldway, M. 2004. Identification of seven S-alleles from the European pear (Pyrus communis) and the determination of compatibility among cultivars. J. Hortic. Sci. Biotechnol. 79: 101-106.
49. Zisovich, A., Stern, A.R., Shafir, S., Goldway, M. 2005. Fertilization efficiency of semi- and fully-compatible European pear (Pyrus communis) cultivars. J. Hortic. Sci. Biotechnol. 80: 143-146.
50. Zuccherelli, S., Tassinari, P., Broothaerts, W., Tartarini, S., Dondini, L., Sansavini, S. 2002. S-allele characterization in self-incompatible pear (Pyrus communis L.). Sex. Plant Reprod. 15: 153-158.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation