Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

How prickly is a prickly pear?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Prickly pear, the very spiny cactus Opuntia ficus-indica, became common and part of the landscape of the Land of Israel several centuries ago when the Levant was part of the Ottoman Empire. In traditional agriculture, hedges of these very spiny plants protected fields from the unwanted impact of the many livestock herds, and, in addition, their sweet fruit was eagerly eaten by humans. We measured the number and distribution of spines in mature, fully expanded green cladodes (the flat, rounded photosynthetic succulent branches) in order to quantify its physical defense. On average, a cladode has 121 areoles (flat lateral buds) carrying a total of 320 spines. The narrow upper margins of the cladodes occupy on average only 9.3% of the cladode area, but 43% of the spiny areoles, which are much denser there. Thus, in this Opuntia species, the strongest physical defense is formed where the tissues have a higher risk of attack by large herbivores.

Affiliations: 1: Department of Science Education-Biology, University of Haifa—Oranim ; 2: Department of Science Education-Biology, University of Haifa—Oranim levyadun@research.haifa.ac.il

10.1560/IJPS.57.1-2.117
/content/journals/10.1560/ijps.57.1-2.117
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps.57.1-2.117
Loading

Data & Media loading...

1. Alcalay, R. 1965. The complete Hebrew-English dictionary. Massada Publishing Co., Tel Aviv.
2. Allen, L. J. S., Allen, E. J., Kunst, C. R. G., Sosebee, R. E. 1991. A diffusion model for dispersal of Opuntia imbricata (cholla) on rangeland. J. Ecol. 79: 1123-1135.
3. Barbera, G., Carimi, F., Inglese, P. 1992. Past and present role of the Indian-fig prickly-pear (Opuntia ficus-indica (L.) Miller, Cactaceae) in the agriculture of Sicily. Econ. Bot. 46: 10-20.
4. Belovsky, G. E., Schmitz, O. J., Slade, J. B., Dawson, T. J. 1991. Effects of spines and thorns on Australian arid zone herbivores of different body masses. Oecologia 88: 521-528.
5. Benson, L. 1982. The cacti of the United States and Canada. Stanford University Press, Stanford.
6. Björkman, C., Anderson, D. B. 1990. Trade-off among antiherbivore defences in a South American blackberry (Rubus bogotensis). Oecologia 85: 247-249.
7. Bobich, E. G., Nobel, P. S. 2001. Vegetative reproduction as related to biomechanics, morphology and anatomy of four cholla cactus species in the Sonoran desert. Ann. Bot. 87: 485-493.
8. Brutsch, M. O., Zimmermann, H. G. 1993. The prickly pear (Opuntia ficus-indica [Cactaceae]) in South Africa: utilization of the naturalized weed, and of the cultivated plants. Econ. Bot. 47: 154-162.
9. Chavez-Ramirez, F., Wang, X., Jones, K., Hewitt, D., Felker, P. 1997. Ecological chsracterization of Opuntia clones in south Texas: implications for wildlife herbivory and frugivory. J. PACD 2: 9-19.
10. Cooper, S. M., Ginnett, T. F. 1998. Spines protect plants against browsing by small climbing mammals. Oecologia 113: 219-221.
11. Cooper, S. M., Owen-Smith, N. 1986. Effects of plant spinescence on large mammalian herbivores. Oecologia 68: 446-455.
12. Donkin, R. A. 1977. Spanish red. An ethnogeographical study of cochineal and the Opuntia cactus. Trans. Am. Philos. Soc. 67(5): 1-84.
13. Felker, P., Paterson, A., Jenderek, M. M. 2006. Forage potential of Opuntia clones maintained by the USDA, national plant germplasm system (NPGS) collection. Crop Sci. 46: 2161-2168.
14. Fornara, D. A., Du Toit, J. T. 2007. Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna. Ecology 88: 200-209.
15. Freeman, D. B. 1992. Prickly pear menace in eastern Australia 1880-1940. Geogr. Rev. 82: 413-429.
16. Gibson, A. C., Nobel, P. S. 1986. The cactus primer. Harvard University Press, Cambridge.
17. Goheen, J. R., Young, T. P., Keesing, F., Palmer, T. M. 2007. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 95: 129-138.
18. Gómez, J. M., Zamora, R. 2002. Thorns as induced mechanical defense in a long-lived shrub (Hormathophylla spinosa, Cruciferae). Ecology 83: 885-890.
19. Grubb, P. J. 1992. A positive distrust in simplicity—lessons from plant defences and from competition among plants and among animals. J. Ecol. 80: 585-610.
20. Halpern, M., Raats, D., Lev-Yadun, S. 2007a. Plant biological warfare: thorns inject pathogenic bacteria into herbivores. Environ. Microbiol. 9: 584-592.
21. Halpern, M., Raats, D., Lev-Yadun, S. 2007b. The potential anti-herbivory role of microorganisms on plant thorns. Plant Signal. Behav. 2: 503-504.
22. Huntzinger, M., Karban, R., Young, T., Palmer, T. M. 2004. Relaxation of induced indirect defenses of acacias following exclusion of mammalian herbivores. Ecology 85: 609-614.
23. Janzen, D. H. 1986. Chihuahuan Desert nopaleras: defaunated big mammal vegetation. Annu. Rev. Ecol. Syst. 17: 595-636.
24. Janzen, D. H., Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215: 19-27.
25. Kaufmann, J. C. 2004. Prickly pear cactus and pastoralism in southwest Madagascar. Ethology 43: 345-361.
26. Le Houérou, H. N. 1996. The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. J. Arid Environ. 33: 135-159.
27. Lev-Yadun, S. 2001. Aposematic (warning) coloration associated with thorns in higher plants. J. Theor. Biol. 210: 385-388.
28. Lev-Yadun, S. 2003a. Weapon (thorn) automimicry and mimicry of aposematic colorful thorns in plants. J. Theor. Biol. 224: 183-188.
29. Lev-Yadun, S. 2003b. Why do some thorny plants resemble green zebras? J. Theor. Biol. 244: 483-489.
30. Lev-Yadun, S. 2006. Defensive coloration in plants: a review of current ideas about anti-herbivore coloration strategies. In: Teixeira da Silva, J. A., ed. Floriculture, ornamental and plant biotechnology: advances and topical issues. Vol. IV. Global Science Books, London, pp. 292-299.
31. Lev-Yadun, S. 2009a. Aposematic (warning) coloration in plants. In: Baluska, F., ed. Plant-environment interactions from behavioral perspective. Vol. II. Springer-Verlag, Berlin, pp. 167-202.
32. Lev-Yadun, S. 2009b. Müllerian and Batesian mimicry rings of white-variegated aposematic spiny and thorny plants: a hypothesis. Isr. J. Plant Sci. 57: 107-116, this issue.
33. Lev-Yadun, S., Gould, K. S. 2008. Role of anthocyanins in plant defense. In: Gould, K. S., Davies, K. M., Winefield, C., eds. Life's colorful solutions: the biosynthesis, functions, and applications of anthocyanins. Springer-Verlag, Berlin, pp. 21-48.
34. Lev-Yadun, S., Halpern, M. 2008. External and internal spines in plants insert pathogenic microorganisms into herbivore's tissues for defense. In: Van Dijk, T., ed. Microbial ecology research trends. Nova Scientific Publishers, Inc., New York, pp. 155-168.
35. Lev-Yadun, S., Ne'eman, G. 2004. When may green plants be aposematic? Biol. J. Linn. Soc. 81: 413-416.
36. Lev-Yadun, S., Ne'eman, G. 2006. Color changes in old aposematic thorns, spines, and prickles. Isr. J. Plant Sci. 54: 327-333.
37. Mauseth, J. D. 2006. Structure-function relationships in highly modified shoots of Cactaceae. Ann. Bot. 98: 901-926.
38. McCall, A. C., Irwin, R. E. 2006. Florivory: the intersection of pollination and herbivory. Ecol. Lett. 9: 1351-1365.
39. Midgley, J. J. 2004. Why are spines of African Acacia species white? Afr. J. Range Forage Sci. 21: 211-212.
40. Midgley, J. J., Botha, M. A., Balfour, D. 2001. Patterns of thorn length, density, type and colour in African Acacias. Afr. J. Range Forage Sci. 18: 59-61.
41. Migaki, G., Hinson, L. E., Imes, G. D., Jr., Garner, F. M. 1969. Cactus spines in tongues of slaughtered cattle. J. Am. Vet. Med. Assoc. 155: 1489-1492.
42. Milewski, A. V., Young, T. P., Madden, D. 1991. Thorns as induced defenses: experimental evidence. Oecologia 86: 70-75.
43. Mizrahi, Y., Nerd, A., Nobel, P. S. 1997. Cacti as crops. Hortic. Rev. 18: 291-319.
44. Myers, J. H. 1987. Nutrient availability and the deployment of mechanical defenses in grazed plants: a new experimental approach to the optimal defense theory. Oikos 49: 350-351.
45. Myers, J. H., Bazely, D. 1991. Thorns, spines, prickles, and hairs: are they stimulated by herbivory and do they deter herbivores? In: Tallamy, D. W., Raupp, M. J., eds. Phytochemical induction by herbivores. John Wiley & Sons, Inc., New York, pp. 325-344.
46. Nitao, J. K., Zangerl, A. R. 1987. Floral development and chemical defense allocation in wild parsnip (Pastinaca sativa). Ecology 68: 521-529.
47. Nobel, P. S. 1994. Remarkable agaves and cacti. Oxford University Press, New York.
48. Ohnmeiss, T. E., Baldwin, I. T. 2000. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81: 1765-1783.
49. Pareek, O. P., Singh, R. S., Nath, V., Vashishtha, B. B. 2001. The prickly pear (Opuntia ficus-indica L. Mill.). Agrobios, Jodhpur, India.
50. Perevolotsky, A., Haimov, Y. 1991. Structural response of Mediterranean woodland species to disturbance: evidence of different defense strategies. Isr. J. Bot. 40: 305-313.
51. Pisani, J. M., Distel, R. A. 1998. Inter- and intraspecific variations in production of spines and phenoles in Prosopis caldenia and Prosopis flexuosa.J. Chem. Ecol. 24: 23-36.
52. Rebollo, S., Milchunas, D. G., Noy-Meir, I. 2005. Refuge effects of a cactus in grazed short-grass steppe. J. Veg. Sci. 16: 85-92.
53. Ronel, M., Lev-Yadun, S. 2009. Spiny plants in the archaeological record of Israel. J. Arid Environ. 73: 754-761.
54. Ronel, M., Malkiel, H., Lev-Yadun, S. 2007. Quantitative characterization of the thorn system of the common shrubs Sarcopoterium spinosum and Calicotome villosa.Isr. J. Plant Sci. 55: 63-72.
55. Ronel, M., Khateeb, S., Lev-Yadun, S. 2009. Protective spiny modules in thistles of the Asteraceae in Israel. J. Torrey Bot. Soc. 136: 46-56.
56. Russell, C. E., Felker, P. 1987. The prickly-pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Econ. Bot. 41: 433-445.
57. Stamp, N. 2003. Out of the quagmire of plant defense hypothesis. Q. Rev. Biol. 78: 23-55.
58. Stintzing, F. C., Carle, R. 2005. Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 49: 175-194.
59. Strauss, S. Y., Irwin, R. E., Lambrix, V. M. 2004. Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J. Ecol. 92: 132-141.
60. Theimer, T. C., Bateman, G. C. 1992. Patterns of prickly-pear herbivory by collared peccaries. J. Wildl. Manage. 56: 234-240.
61. Traw, M. B., Feeny, P. 2008. Glucosinolates and trichomes track tissue value in two sympatric mustards. Ecology 89: 763-772.
62. Tristram, H. B. 1981. The Land of Israel. A journal of travels in Palestine undertaken with special reference to its physical character. Bialik Institute, Jerusalem (Hebrew translation).
63. Wilson, S. L., Kerley, G. I. H. 2003. The effect of plant spinescence on the foraging efficiency of bushbuck and boergoats: browsers of similar body size. J. Arid Environ. 55: 150-158.
64. Young, T. P. 1987. Increased thorn length in Acacia depranolobium—an induced response to browsing. Oecologia 71: 436-438.
65. Young, T. P., Stanton, M. L., Christian, C. E. 2003. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101: 171-179.
66. Zangerl, A. R., Rutledge, C. E. 1996. The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am. Nat. 47: 599-608.
67. Zohary, M. 1962. Plant life of Palestine (Israel and Jordan). The Ronald Press, New York.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps.57.1-2.117
Loading

Article metrics loading...

/content/journals/10.1560/ijps.57.1-2.117
2009-05-18
2018-06-23

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation