Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Three decades of biomonitoring airborne Pb in a rural area with the epiphytic lichen Ramalina lacera: A retrospective study

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The present paper analyzes the results of a biomonitoring study that used the epiphytic lichen Ramalina lacera to estimate the environmental pollution impact of anthropogenic activity in terms of Pb content. Thalli of the lichen growing on carob twigs were collected in November 2001 in a relatively unpolluted forest near HaZorea, Ramat Menashe Hills, Northeast Israel, and transplanted to 11 rural and suburban sites around a coal-fired power plant near the town of Hadera. The lichens were retrieved in August 2002 and were found to contain smaller amounts of Pb than reported in the relevant literature. A comparative analysis of Pb amounts in thalli of R. lacera in the control site in HaZorea over the years 1974-2002 detected high values for Pb in July 1982 subsequent to extraordinarily extensive activity of motor vehicles, mostly using leaded gasoline, in June of the same year. The Pb values remained relatively high until 1993. Only in the years 1994-2002 did the Pb values decrease to a level resembling the first series of data obtained in the years 1974-1981. It is apparent that a decade and more were needed to "forget" the polluting event, and that the data obtained in this period (1982-1993) were irrelevant to the availability of Pb pollutants. Despite the gradual increase of the total number of motor vehicles in Israel, the Pb values in lichens decreased due to the introduction of unleaded gasoline in September 1990. Additional retrospective studies dealing with Pb in lichens are discussed.

Affiliations: 1: Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel ; 2: Department of Plant Sciences, The George S. Wise Faculty of Life Sciences


Full text loading...


Data & Media loading...

1. Adamo, P., Giordano, S., Vingiani, S., Castaldo Cobianchi, R., Violante, P. 2003. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ. Pollut. 122: 91-103.
2. Ayrault, S., Clochiatti, R., Carrot, F., Daudin, L., Bennett, J. P. 2007. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants. Sci. Total Environ. 372: 717-727.
3. Bargagli, R., Monaci, F., Borghini, F., Bravi, F., Agnorelli, C. 2002. Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environ. Pollut. 116: 279-287.
4. Basile, A., Sorbo, S., Conte, B., Castaldo Cobianchi, R. 2008. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ. Pollut. 151: 401-407.
5. Bennett, J. P. 1995. Abnormal chemical element concentrations in lichens of Isle Royale National Park. Environ. Exp. Bot. 35: 259-277.
6. Bennett, J. P., Wetmore, C. M. 1997. Chemical element concentration in four lichens on a transect entering Voyageur National Park. Environ. Exp. Bot. 37: 173-185.
7. Bennett, J. P., Wetmore, C. M. 1999. Changes in element contents of selected lichens over 11 years in northern Minnesota, USA. Environ. Exp. Bot. 41: 75-82.
8. Berg, T., Royset, O., Steinnes, E., Vadset, M. 1995. Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples. Environ. Pollut. 88: 67-77.
9. Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., Gallorini, M. 2007. Comparison between the accumulation capacity of four lichen species transplanted to an urban site. Environ. Pollut. 148: 468-476.
10. Brunialti, G., Frati, L. 2007. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Sci. Total Environ. 387: 289-300.
11. Carreras, H. A., Wannaz, E. D., Perez, C. A., Pignata, M. L. 2005. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.Environ. Res. 97: 50-57.
12. Crittenden, P. D. 1983. The role of lichens in the nitrogen economy of subarctic woodlands: nitrogen loss from the nitrogen-fixing lichen Stereocaulon paschale during rainfall. In: Lee, J. A., McNeil, S., Rorison, I. H., eds. Nitrogen as an ecological factor. Blackwell, Oxford, pp. 63-68.
13. Crittenden, P. D. 1989. Nitrogen relations of mat-forming lichens. In: Boddy, L., Marchant, R., Read, D. J., eds. Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp. 243-268.
14. Déruelle, S. 1996. La fiabilite des lichens comme bioindicateur de la pollution plombique. Écologie 27: 285-290.
15. Déruelle, S., Petit, P. J. X. 1983. Preliminary studies on the net photosynthesis and respiration responses of some lichens to automobile pollution. Cryptogamie, Bryol. Lichénol. 4: 269-278.
16. Frati, L., Brunialti, G., Loppi, S. 2005. Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from central Italy. J. Atmos. Chem. 52: 221-230.
17. Freitas, M. C. 1994. Heavy metals in Parmelia sulcata collected in the neighborhood of a coal-fired power station. Biol. Trace Elem. Res. 43-45: 207-212.
18. Freitas, M. C. 1995. Elemental bioaccumulators in air pollution studies. J. Radioanal. Nucl. Chem. 192: 171-181.
19. Freitas, M. S., Reis, M. A., Alves, L. C., Wolterbeek, H.Th. 1999. Distribution in Portugal of some pollutants in the lichen Parmelia sulcata.Environ. Pollut. 106: 229-235.
20. Gailey, F. A. Y., Lloyd, O.Ll. 1984. The use of Lecanora conizaeoides as a monitor of the distribution of atmospheric pollution by metals. Ecol. Dis. 2: 215-224.
21. Garty, J. 1987. Metal amounts in the lichen Ramalina duriaei (De Not.) Bagl. Transplanted at biomonitoring sites around a new coal-fired power station after 1 year of operation. Environ. Res. 43: 104-116.
22. Garty, J. 1988. Comparison between the metal content of a transplanted lichen before and after the start-up of a coal-fired power station in Israel. Can. J. Bot. 66: 668-671.
23. Garty, J. 1993. Lichens as biomonitors for heavy metal pollution. In: Markert, B., ed. Plants as biomonitors, indicators for heavy metals in the terrestrial environment. VCH, Weinheim and New York, pp. 193-263.
24. Garty, J. 2000. Environment and elemental content of lichens. In: Markert, B., Friese, K., eds. Trace elements—their distribution and effects in the environment. Elsevier, Amsterdam, pp. 245-276.
25. Garty, J. 2001. Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit. Rev. Plant Sci. 20: 309-371.
26. Garty, J., Fuchs, C. 1982. Heavy metals in the lichen Ramalina duriaei transplanted in biomonitoring stations. Water, Air, Soil Pollut. 17: 175-183.
27. Garty, J., Ronen, R., Galun, M. 1985. Correlation between chlorophyll degradation and the amount of some elements n the lichen Ramalina duriaei (De Not.) Jatta. Environ. Exp. Bot. 25: 67-74.
28. Garty, J., Kardish, N., Hagemeyer, J., Ronen, R. 1988. Correlation between the concentration of adenosine tri phosphate, chlorophyll degradation and the amounts of airborne heavy metals and sulphur in a transplanted lichen. Arch. Environ. Contam. Toxicol. 17: 601-611.
29. Garty, J., Cohen, Y., Kloog, N., Karnieli, A. 1997a. Effect of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens. Environ. Toxicol. Chem. 16: 1396-1402.
30. Garty, J., Kloog, N., Wolfson, R., Cohen, Y., Karnieli, A., Avni, A. 1997b. The influence of ar pollution on the concentration of mineral elements, on the spectral response and on the production of stress-ethylene in the lichen Ramalina duriaei.New Phytol. 137: 587-597.
31. Garty, J., Cohen, Y., Kloog, N. 1998a. Airborne elements, cell membranes, and chlorophyll in transplanted lichens. J. Environ. Qual. 27: 973-979.
32. Garty, J., Kloog, N., Cohen, Y. 1998b. Integrity of lichen cell membranes in relation to concentration of airborne elements. Arch. Environ. Contam. Toxicol. 34: 136-144.
33. Garty, J., Tamir, O., Hassid, I., Eshel, A., Cohen, Y., Karnieli, A., Orlovsky, L. 2001a. Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J. Environ. Qual. 30: 884-893.
34. Garty, J., Weissman, L., Cohen, Y., Karnieli, A., Orlovsky, A. 2001b. Transplanted lichens in and around the Mount Carmel National Park and the Haifa Bay industrial region in Israel: physiological and chemical responses. Environ. Res. 85A: 159-176.
35. Garty, J., Tomer, S., Levin, T., Lehr, H. 2003. Lichens as biomonitors around a coal-fired power station in Israel. Environ. Res. 91: 186-198.
36. Garty, J., Levin, T., Lehr, H., Tomer, S., Hochman, A. 2004. Interactive effects of UV-B radiation and chemical contamination on physiological parameters in the lichen Ramalina lacera.J. Atmos. Chem. 49: 267-289.
37. Godinho, R. M., Freitas, M. C., Wolterbeek, H.Th. 2004. Assessment of lichen vitality during a transplantation experiment to a polluted site. J. Atmos. Chem. 49: 355-361.
38. González, C. M., Pignata, M. L. 1997. Chemical response of the lichen Punctelia subrudecta (Nyl.) Krog transplanted close to a power station in an urban-industrial environment. Environ. Pollut. 97: 195-203.
39. Halonen, P., Hyvärinen, M., Kauppi, M. 1993. Emission related and repeated monitoring of element concentrations in the epiphytic lichen Hypogymnia physodes in a coastal area, W. Finland. Ann. Bot. Fennici 27: 221-230.
40. Iwashita, A., Nakajima, T., Takanashi, H., Ohki, A., Fujita, Y., Yamashita, T. 2007. Determination of trace elements in coal fly ash by joint-use of ICP-AES and atomic absorption spectrometry. Talanta 71: 251-257.
41. Jeran, Z., Mrak, T., Jaćimović, R., Batič, F., Kastelec, D., Mavsar, R., Simončič, P. 2007. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Environ. Pollut. 146: 324-331.
42. Kress, N., Herut, B. 1998. Disposal of coal fly ash at a deep water site in the eastern Mediterranean off Israel—six years of monitoring. Chem. Ecol. 15: 185-198.
43. Kubin, E. 1990. A survey of element concentrations in the epiphytic lichen Hypogymnia physodes in Finland in 1985-86. In: Kauppi, M., Antilla, P., Kettämies, K., eds. Acidification in Finland. Springer-Verlag, Berlin, pp. 421-446.
44. Lawrey, J. D. 1993. Lichens as monitors of pollutant elements at permanent sites in Maryland and Virginia. Bryologist 96: 339-341.
45. Lawrey, J. D., Hale, M. E. Jr. 1988. Lichen evidence for changes in atmospheric pollution in Shenandoah National Park, Virginia. Bryologist 91: 21-23.
46. Loppi, S., De Dominicis, V. 1996. Lichens as long-term biomonitors of air quality in central Italy. Acta Bot. Neerl. 45: 563-570.
47. Loppi, S., Frati, L. 2006. Lichen diversity and lichen transplants as monitors of air pollution in a rural area of central Italy. Environ. Monit. Assess. 114: 361-375.
48. Loppi, S., Pirintsos, S. A. 2003. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environ. Pollut. 121: 327-332.
49. Loppi, S., Corsini, A., Bruscoli, C., Rossetti, C. 1995. Lichen biomonitoring of heavy metals in Montecatini Terme (central northern Italy). Micol. Veg. Mediteranea 10: 122-128.
50. Loppi, S., Pacioni, G., Olivieri, N., Di Giacomo, F. 1998a. Accumulation of trace metals in the lichen Evernia prunastri transplanted at biomonitoring sites in central Italy. Bryologist 101: 451-454.
51. Loppi, S., Putorti, E., Signorini, C., Fommei, S., Pirintsos, S. A., De Dominicis, V. 1998b. A retrospective study using epiphytic lichens as biomonitors of air quality: 1980 and 1996 (Tuscany, central Italy). Acta Oecol. 19: 405-408.
52. Loppi, S., Frati, L., Paoli, L., Bigagli, V., Rossetti, C., Bruscoli, C., Corsini, A. 2004. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Sci. Total Environ. 326: 113-122.
53. Máguas, C., Kratz, W., Sérgio, C., Sim-Sim, M., Catarino, F. 1990. The use of epiphytes for the monitoring of environmental heavy metal pollution in Portugal. In: Barceló, J., ed. Environmental contamination. Proc. 4th Int. Conference, Barcelona, 1-4 October 1990, CEP Consultants, Edinburgh, UK.
54. Mastalerz, M., Hower, J. C., Drobniak, A., Mardon, S. M., Lis, G. 2004. From in-situ coal to fly ash: a study of coal mines and power plants from Indiana. Int. J. Coal Geo. 59: 171-192.
55. Monaci, F., Bargagli, R., Gasparo, D. 1997. Air pollution monitoring by lichens in a small medieval town of central Italy. Acta Bot. Neerl. 46: 403-412.
56. Monna, F., Poujol, M., Losno, R., Dominik, J., Annegarn, H., Coetzee, H. 2006. Origin of atmospheric lead in Johannesburg, South Africa. Atmos. Environ. 40: 6554-6566.
57. Moreno, T., Alastuey, A., Querol, X., Font, O., Gibbons, W. 2007. The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. Int. J. Coal Geol. 71: 122-128.
58. Nathan, Y., Dvorachek, M., Pelly, I., Mimram, U. 1999. Characterization of coal fly ash from Israel. Fuel 78: 205-213.
59. Nimis, P. L., Castello, M., Perotti, M. 1990. Lichens as biomonitors of sulphur dioxide pollution in La Spezia (northern Italy). Lichenologist 22: 333-344.
60. Nimis, P. L., Castelo, M., Perotti, M. 1993. Lichens as bioindicators of heavy metal pollution: a case study at La Spezia (N. Italy). In: Markert, B., ed. Plants as biomonitors, indicators for heavy metal in the terrestrial environment. VCH, Weinheim, pp. 265-284.
61. Nriagu, J. O. 1989. The history of leaded gasoline. In: Vernet, J-P., ed. Proceedings of the International Conference: Heavy Metals in the Environment. Geneva, September 1989, CEP Consultants, Edinburgh, UK, Vol. 2, pp. 361-366.
62. Pakarinen, P., Mäkinen, A. 1976. Suosamalet-Jäkälät jä männyn neulaset raskasmetallien kerääjinä (comparison of Pb, Zn and Mn contents of mosses, lichens and pine needles in raised bogs). Suo 27: 77-83.
63. Palmieri, F., Neri, R., Benco, C., Serracca, L. 1997. Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring. J. Environ. Pathol. Toxicol. Oecol. 16: 175-190.
64. Pirintsos, S. A., Matsi, T., Vokou, D., Gaggi, C., Loppi, S. 2006. Vertical distribution patterns of trace elements in an urban environment as reflected by their accumulation in lichen transplants. J. Atmos. Chem. 54: 121-131.
65. Purvis, O. W., Chimonides, P. D. J., Jeffries, T. E., Jones, G. C., Rusu, A.-M., Read, H. 2007. Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmos. Environ. 41: 72-80.
66. Reis, M. A. 2001. Biomonitoring and assessment of atmospheric trace elements in Portugal. Methods, response modeling and nuclear analytical techniques. Ph.D. thesis, University of Delft, The Netherlands.
67. Reis, M. A., Alves, L. C., Freitas, M. C., van Os, B., Wolterbeek, H.Th. 1999. Lichens (Parmelia sulcata) time response model to environmental elemental availability. Sci. Total Environ. 232: 105-115.
68. Richardson, D. H. S., Shore, M., Hartree, R., Richardson, R. M. 1995. The use of X-ray fluorescence spectrometry for the analysis of plants, especially lichens, employed in biological monitoring. Sci. Total Environ. 176: 97-105.
69. Scerbo, R., Ristori, T., Possenti, L., Lampugnani, L., Barale, R., Barghigiani, C. 2002. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci. Total Environ. 286: 27-40.
70. Shoham-Frider, E., Shelef, G., Kress, N. 2003. Chemical changes in different types of coal ash during prolonged, large scale, contact with seawater. Waste Manage. 23: 125-134.
71. Srinivasa Reddy, M., Basha, S., Joshi, H. V., Jha, B. 2005. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. J. Hazard. Mater. B123: 242-249.
72. Wolterbeek, H. T., Garty, J., Reis, M. A., Freitas, M. C. 2003. Biomonitors in use: lichens and metal air pollution. In: Markert, B. A., Breure, A. M., Zechmeister, H. G., eds. Bioindicators and biomonitors, principles, concepts and applications. Elsevier, Amsterdam, pp. 377-419.
73. Yenisoy-Karakas, S., Tuncel, S. G. 2004. Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen Xanthoria parietina (L.) Th. Fr. Sci. Total Environ. 329: 43-60.
74. Zheng, L., Liu, G., Wang, L., Chu, C-L. 2008. Composition and quality of coals in the Huaibei Coalfield, Anhui, China. J. Geochem. Explor. 97: 59-68.
75. Zschau, T., Getty, S., Gries, C., Ameron, Y., Zambrano, A., Nash III, T. H. 2003. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona. Environ. Pollut. 125: 21-30.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation