Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Bacterial fruit blotch: A threat to the cucurbit industry

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Bacterial fruit blotch (BFB) of cucurbits is caused by the Gram-negative bacterium Acidovorax avenae subsp. citrulli. The disease gained importance in the late 1980s, after devastating outbreaks in watermelon fields in several states in the US. Since then, BFB has spread worldwide, and has been reported in other cucurbits such as melon, pumpkin, squash, and cucumber. A. avenae subsp. citrulli is a seedborne pathogen of highly destructive potential. Under favorable conditions, the bacterium spreads rapidly throughout nurseries and in the field, leading to seedling blight or, at a later stage, fruit rot. Strategies for managing BFB are limited and there are no reliable sources of BFB resistance. The disease therefore represents a serious threat to the cucurbit industry. Despite its economic importance, there is little knowledge on basic aspects of the pathogen's biology or on the molecular basis of BFB pathogenesis. Recently, the genome sequence of one A. avenae subsp. citrulli strain was released, making a great contribution to the investigation of basic aspects of BFB. A better understanding of these aspects will contribute to improved screens for BFB resistance and to the development of more effective strategies to manage this threatening disease.

Affiliations: 1: Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem ; 2: Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel

10.1560/IJPS.58.1.19
/content/journals/10.1560/ijps.58.1.19
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps.58.1.19
Loading

Data & Media loading...

1. Ade, J., DeYoung, B. J., Golstein, C., Innes, R. W. 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 104: 2531-2536.
2. Alfano, J. R., Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42: 385-414.
3. Assouline, I. 1996. The watermelon fruit blotch and other diseases caused by Acidovorax avenae. Phytoparasitica 24: 136-137.
4. Assouline, I., Milshtein, H., Mizrachi, M., Levy, E., Ben-Ze'ev, I. S. 1997. Acidovorax avenae subsp. citrulli transmitted by Solanaceous seeds. Phytoparasitica 25: 2.
5. Bahar, O., Efrat, M., Hadar, E., Dutta, B., Walcott, R. R., Burdman, S. 2008. New subspecies-specific polymerase chain reaction-based assay for the detection of Acidovorax avenae subsp. citrulli. Plant Pathol. 57: 754-763.
6. Bahar, O., Goffer, T., Burdman, S. 2009. Type IV pili are required for virulence, twitching motility and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22: 909-920.
7. Bahar, O., Kritzman, G., Burdman, S. 2009. Bacterial fruit blotch of melon: screens for disease tolerance and role of seed transmission in pathogenicity. Eur. J. Plant Pathol. 123: 71-83.
8. Black, M. C., Isakeit, T., Barnes, L. W. 1994. First report of bacterial fruit blotch of watermelon in Texas. Plant Dis. 78: 831.
9. Bogdanove, A. J., Beer, S. V., Bonas, U., Boucher, C. A., Collmer, A., Coplin, D. L., Cornelis, G. R., Huang, H. C., Hutcheson, S. W., Panopoulos, N. J., Van Gijsegem, F. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20: 681-683.
10. Bray, S. E., Lee, Y. N., He, S. Y. 2007. Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr. Opin. Plant Biol. 10: 580-586.
11. Brooks, A. D., He, S. Y., Gold, S., Keen, N. T., Collmer, A., Hutcheson, S. W. 1990. Molecular cloning of the structural gene for exopolygalacturonate lyase from Erwinia chrysanthemi EC16 and characterization of the enzyme product. J. Bacteriol. 172: 6950-6958.
12. Burdman, S., Kots, N., Kritzman, G., Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 89: 1339-1347.
13. Buttner, D., Bonas, U. 2002. Getting across—bacterial type III effector proteins on their way to the plant cell. EMBO J. 21: 5313-5322.
14. Crall, J. M., Schenck, N. C. 1969. Bacterial fruit rot of watermelon in Florida. Plant Dis. Rep. 53: 74-75.
15. Chisholm, S. T., Coaker, G., Day, B., Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814.
16. Evans, T. A., Mulrooney, R. P. 1991. First report of watermelon fruit blotch in Delaware. Plant Dis. 75: 1074.
17. Fessehaie, A., Hopkins, D., Gitaitis, R., Langston, D., Walcott, R. 2005. Role of honey bees in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathol. 95: S29-S29.
18. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275-296.
19. Goth, R. W., Webb, R. E. 1981. Resistance of commercial watermelon (Citrullus lanatus) to Pseudomonas pseudoalcaligenes subsp. citrulli. Plant Dis. 65: 671-672.
20. Gürlebeck, D., Thieme, F., Bonas, U. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163: 233-255.
21. Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R., Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22: 115-122.
22. Hopkins, D. L. 1990. Differences in cultivar resistance to bacterial fruit blotch of watermelon. Phytopathology 80: 435.
23. Hopkins, D. L. 1993. Field spread of bacterial fruit blotch of watermelon. Phytopathology 83: 466.
24. Hopkins, D. L. 1994. Spread of bacterial fruit blotch of watermelon in the greenhouse. Phytopathol. 84: 775.
25. Hopkins, D. L. 1995. Copper-containing fungicides reduce the spread of bacterial fruit blotch of watermelon in the greenhouse. Phytopathology 85: 510.
26. Hopkins, D. L., Thompson, C. M. 2002. Evaluation of Citrullus sp. germ plasm for resistance to Acidovorax avenae subsp. citrulli. Plant Dis. 86: 61-64.
27. Hopkins, D. L., Thompson, C. M., Elmstrom, G. W. 1993. Resistance of watermelon seedlings and fruit to the fruit blotch bacterium. HortScience 28: 122-123.
28. Hopkins, D. L., Cucuzza, J. D., Watterson, J. C. 1996. Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Dis. 80: 529-532.
29. Hopkins, D. L., Thompson, C. M., Hilgren, J., Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis. 87: 1495-1499.
30. Innes, R. W. 2004. Guarding the goods. New insights into the central alarm system of plants. Plant Physiol. 135: 695-701.
31. Isakeit, T., Black, M. C., Barnes, L. W., Jones, J. B. 1997. First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Dis. 81: 694.
32. Isakeit, T., Black, M. C., Jones, J. B. 1998. Natural infection of citronmelon with Acidovorax avenae subsp. citrulli. Plant Dis. 82: 351-351.
33. Kang, Y., Liu, H., Genin, S., Schell, M. A., Denny, T. P. 2002. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol. Microbiol. 46: 427-437.
34. Langston, D. B.Jr., Walcott, R. R., Gitaitis, R. D., Sanders, F. H. Jr. 1999. First report of a fruit rot of pumpkin caused by Acidovorax avenae subsp. citrulli in Georgia. Plant Dis. 83: 199.
35. Latin, R. X., Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon: the hypothetical exam question becomes reality. Plant Dis. 79: 761-765.
36. Latin, R. X., Rane, K. K. 1990. Bacterial fruit blotch of watermelon in Indiana. Plant Dis. 74: 331.
37. Lessl, J. T., Fessehaie, A., Walcott, R. R. 2007. Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. J. Phytopathol. 155: 114-121.
38. Liu, H., Kang, Y., Genin, S., Schell, M. A., Denny, T. P. 2001. Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiol. 147: 3215-3229.
39. Louws, F. J., Rademaker, J. L. W., de Bruijn, F. J. 1999. The three Ds of PCR-based genomic analysis of phytobacteria: Diversity, detection, and disease diagnosis. Annu. Rev. Phytopathol. 37: 81-125.
40. Martin, H. L., O'Brien, R. G. 1999. First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Dis. 83: 965.
41. Meng, Y., Li, Y., Galvani, C. D., Hao, G., Turner, J. N., Burr, T. J., Hoch, H. C. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187: 5560-5567.
42. Minsavage, G. V., Hoover, R. J., Kucharek, T. A., Stall, R. E. 1995. Detection of the watermelon fruit blotch pathogen on seeds with the polymerase chain reaction. Phytopathology 85: 1162.
43. Mirik, M., Aysan, Y., Sahin, Y. 2006. Occurrence of bacterial fruit blotch of watermelon caused by Acidvorax avenae subsp. citrulli in the eastern Mediterranean region of Turkey. Plant Dis. 90: 829.
44. Mudgett, M. B. 2005. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56: 509-531.
45. O'Brien, R. G., Martin, H. L. 1999. Bacterial blotch of melons caused by strains of Acidovorax avenae subsp. citrulli. Aust. J. Exp. Agric. 39: 479-485.
46. Palkovics, L., Petróczy, M., Kertész, B., Németh, J., Bársony, C., Mike, Z., Hevesi, M. 2008. First report of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in Hungary. Plant Dis. 92: 834-835.
47. Park, Y. H., Lee, Y. J., Choi, Y. W., Son, B. G., Kang, J. S. 2008. Evaluations of PCR primers used in the detection of Acidovorax avenae subsp. citrulli causing bacterial fruit blotch (BFB) in cucurbits. Hortic. Environ. Biotechnol. 49: 325-331.
48. Rane, K. K., Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512.
49. Ren, Y. Z., Li, H., Li, G. Y., Wang, Q. Y. 2006. First report of Acidovorax avenae subsp. citrulli infecting edible seed watermelon (Citrullus lanatus var. lanatus) in China. Plant Dis. 90: 1112.
50. Schaad, N. W., Sowell, G., Goth, R. W., Colwell, R. R., Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. Int. J. Syst. Bacteriol. 28: 117-125.
51. Schaad, N. W., Song, W. Y., Hatziloukas, E. 2000. PCR primers for detection of plant pathogenic species and subspecies of Acidovorax. US Patente 6: 146, 834.
52. Schaad, N. W., Postnikova, E., Randhawa, P. S. 2003. Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In: Iacobellis, N. S., Collmer, A., Hutcheson, S. W., Mansfield, J. W., Morris, C. E., Murillo, J., Schaad, N. W., Stead, D. E., Surico, G., Ullrich, M. S., eds. Pseudomonas syringae and related pathogens. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 573-581.
53. Schaad, N. W., Postnikova, E., Sechler, A., Claflin, L. E., Vidaver, A. K., Jones, J. B., Agarkova, I., Ignatov, A., Dickstein, E., Ramundo, B. A. 2008. Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst. Appl. Microbiol. 31: 434-446.
54. Somodi, G. C., Jones, J. B., Hopkins, D. L., Stall, R. E., Kucharek, T. A., Hodge, N. C., Watterson, J. C. 1991. Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Dis. 75: 1053-1056.
55. Song, W. Y., Sechler, A. J., Hatziloukas, E., Kim, H. M., Schaad, N. W. 2003. Use of PCR for rapid identification of Acidovorax avenae subsp. citrulli. In: Iacobellis, N. S., Collmer, A., Hutcheson, S. W., Mansfield, J. W., Morris, C. E., Murillo, J., Schaad, N. W., Stead, D. E., Surico, G., Ullrich, M. S., eds. Pseudomonas syringae and related pathogens. Kluwer Academic Publishers, Dordrecht, pp. 531-544.
56. Sowell, G., Schaad, N. W. 1979. Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon-seed transmission and resistance of plant introductions. Plant Dis. Rep. 63: 437-441.
57. Walcott, R. R., Gitaitis, R. D. 2000. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis. 84: 470-474.
58. Walcott, R. R., Langston, D. B.Jr., Sanders, F. H. Jr., Gitaitis, R. D. 2000. Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. Phytopathology 90: 191-196.
59. Walcott, R. R., Gitaitis, R., Castro, A. C. 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93: 528-534.
60. Walcott, R. R., Fessehaie, A., Castro, A. C. 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J. Phytopathology 152: 277-285.
61. Walcott, R. R., Castro, A. C., Fessehaie, A., Ling, K. 2006. Progress towards a commercial PCR-based assay for Acidovorax avenae subsp. citrulli. Seed Sci. Technol. 34: 101-116.
62. Wall, G. C., Santos, V. M. 1988. A new bacterial disease on watermelon in the Mariana Islands. Phytopathology 78: 1605.
63. Wang, L., Makino, S., Subedee, A., Bogdanove, A. J. 2007. Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Appl. Environ. Microbiol. 73: 8023-8027.
64. Webb, R. E., Goth, R. W. 1965. A seedborne bacterium isolated from watermelon. Plant Dis. Rep. 49: 818-821.
65. Willems, A., Goor, M., Thielemans, S., Gillis, M., Kersters, K., De Ley, J. 1992. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int. J. Syst. Bacteriol. 42: 107-119.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps.58.1.19
Loading

Article metrics loading...

/content/journals/10.1560/ijps.58.1.19
2010-05-18
2018-09-19

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation