Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Treatment with chitosan protects habanero pepper against the infection with Phytophthora capsici

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Similar to most members of the genus Capsicum, the habanero pepper (Capsicum chinense Jacq.) is susceptible to the deadly disease Phytophthora blight caused by the oomycete Phytophthora capsici. Currently, this pathogen is controlled mainly with agrochemicals, a non-effective strategy with undesirable effects on the environment and human health. In this work, we evaluated the protective effect of chitosan against the infection with P. capsici. Cultivation of P. capsici in vitro in the presence of 10 μg · mL-1 chitosan reduced its growth significantly; however, higher concentrations (100 and 500 μg · mL-1) practically blocked its growth (by 90 and 95%, respectively). On the other hand, spraying high concentrations of chitosan (100 and 500 μg · mL-1) on three-month-old habanero pepper plants prevented the spreading of the oomycete, but lower concentrations (1 and 10 μg · mL-1) did not prevent the disease. Interestingly, the application of chitosan did not protect the plants if they were previously wounded; thus, it is possible that the treatment has a direct effect on the oomycte, instead of producing a defense-related response in the plant. Since chitosan is an innocuous food additive, our results suggest it can be used as an environmentally friendly complement to the traditional agronomical practices in the control of Phytophthora blight in peppers.

Affiliations: 1: Instituto Tecnológico del Sur del Estado de Yucatán, Carretera Muna-Felipe Carrillo Puerto, tramo Oxkutzcab-Akil ; 2: Instituto Tecnológico de Mérida, Av. Tecnológico km. 5 ; 3: Centro de Investigación Científica de Yucatán, Calle 43 No. 130, colonia Chuburná de Hidalgo ; 4: Instituto Tecnológico del Sur del Estado de Yucatán, Carretera Muna-Felipe Carrillo Puerto, tramo Oxkutzcab-Akil, Km 41+400, Oxkutzcab 97880, Yucatán, México ; 5: Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México


Full text loading...


Data & Media loading...

1. Agrawal, G. K., Rakwal, R., Tamogami, S., Yonorekura, M., Kubo, A., Saji, H. 2002. Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry. 40(12): 1061-1069.
2. Bautista-Baños, S., Hernández-Lauzardo, A. N., Velázquez-Del valle, M. G., Hernández-López, M., Ait Barka, E., Bosquez-Molina, E., Wilson, C. L. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 25(2): 108-118.
3. Baysal, Ö., Turgut, C., Mao, G. 2005. Acibenzolar-S-methyl induced resistance to Phytophthora Capsici In Pepper Leaves. Biologia Plantarum. 49(4): 599-604.
4. Benhamou, N. 2004. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: A comparison wih the effect of chitosan. Phytopathology. 94(7): 693-705.
5. Benhamou, N., Thériault, G. 1992. Treatment with Chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plan Pathology. 41(1): 33-52.
6. Brodelius, P., Funk, C., Haner, A., Villegas, M. 1989. A procedure for the determination of optimal chitosan concentrations for elicitation of cultured plant cells. Phytochemistry. 28(10): 2651-2654.
7. Caamal Cauich, I., Jerónimo Ascencio, F., Chin Cen, F. A. 2004. Beneficio económico de la producción de chile habanero (Capsicum chinense) en el municipio de Halachó, Yucatán. Universidad Autónoma de Chapingo. Resúmenes del 2004 de Proyectos de investigación del Programa Nacional de Investigación y Servicio en Economía y Administración Agropecuaria y Forestal. Línea III: Análisis beneficio costo de las inversiones y desarrollo empresarial en el sector rural. Boletín IV.
8. Dutta, P. K., Tripathi, S., Mehrotra, G. K., Dutta, J. 2009. Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry. 114(4): 1173-1182.
9. El Ghaouth, A., Arul, J., Wilson, C., Benhamou, N. 1994. Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiological and Molecular Plant Pathology. 44(6): 417-432.
10. FAOSTAT. 2007. Base de datos Estadísticos de la Organización de las Naciones Unidas para la Agricultura y la Alimentación. (
11. Gil-Ortega, R., Palazón-Español, C., Cuartero-Zueco, J. 1991. Genetics of resistance to Phytophthora capsici in the pepper line ‘SCM-334’. Plant breeding. 107(1): 50-55.
12. Kendra, D. F., Hadwiger, L. A. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental mycology. 8(3) 276-281.
13. Kuhajek,. J. M., Jeffer, S. N., Slattery, M., Wedge, D. E. 2003. A rapid microbioassay for discovery of novel fungicides for Phytophtora spp. Phytopatology. 93(1): 46-53.
14. Lafontaine, P. J., Benhamou, N. 1996. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Science and Technology. 6(1): 111-124.
15. Leonian, L. 1922. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology. 12: 401-408.
16. Lizama-Uc, G., Estrada-Mota, I. A., Caamal-Chan, M. G., Souza-Perera, R., Oropeza-Salin, C., Islas-Flores, I., Zúñiga Aguilar, J. J. 2007. Chitosan actives a MAP-kinase pathway and modifies abundance of defence-related transcripts in calli of Cocos nucifera L. Physiological and Molecular Plant Pathology. 70(4-6): 130-141.
17. Matheron, M. E., Porchas, M. 2002. Suppression of Phytophthora root and crown rot on pepper plants treated with acibenzolar-S-methyl. Plant Disease. 86(3): 292-297.
18. Oelke, L. M., Bosland, P. W., Steiner, R. 2003. Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science, March 2003, 128(2): 213-218.
19. Orozco-Cardenas, M., Ryan, C. A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences, U. S. A. 96(11): 6533-57.
20. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., Steurbaut, W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4(6): 1457-1465.
21. Reddy, M. B. V., Arul, J., Angers, P., Couture, L. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural Food and Chemistry. 47(3) 1208-1216.
22. Ristaino, J. B., Johnston, S. A. 1999. Ecologically based approaches to management of Phytophtora blight on bell pepper. Plant Disease. 83(12): 1080-1089.
23. Roller, S., Covill, N. 1999. The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology. 47(1-2): 67-77.
24. Shahidi, F., Arachchi, J. K. V., Jeon, Y.-J. 1999. Food applications of chitin and chitosans. Trends in Food Science and Technology. 10(2): 37-51.
25. Sunwoo, J. Y., Lee, J. K., Hwang, B. K. 1996. Induced resistance against Phytophthora capsici in pepper plants in response to DL-B-amino-n-butyric acid. European Journal of Plant Pathology. 102(7): 663-670.
26. Trotel-Aziz, P., Couderchet, M., Vernet, G., Aziz, A. 2006. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis Cinerea. European Journal of Plant Pathology. 114(4): 405-413.
27. Vasyukova, N. I., Zinov'eva, S. V., Il'inskaya, L. I., Perekhod, E. A., Chalenko, G. I., Gerasimova, N. G., Il'ina, A. V., Varlamov, V. P., Ozeretskovskaya, O. L. 2001. Modulation of plant resistance to diseases by water-soluble chitosan. Applied Biochemistry and Microbiology. 37(1): 103-109.
28. Xu, J., Zhao, X., Han, X., Du, Y. 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology. 87(3): 220-228.
29. Zhang, M., Tan, T., Yuan, H., Rui, C. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. Journal of Bioactive and Compatible Polymers. 18(5) 391-400.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation