Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The involvement of glutathione S-tranferases in the interactions between Bemisia tabaci (Hemiptera: Aleyrodidae) and its Brassicaceae hosts

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Generalist insects like Bemisia tabaci (Hemiptera: Aleyrodidae) are capable of feeding on a wide range of plant botanical families. As a result, they have to cope with a tremendous diversity of plant defense secondary compounds. In many cases, resistance to these compounds is achieved by induced activity of detoxification (metabolic) mechanisms that include several enzyme super-families. One of them, the glutathione S-tranferases (GSTs), is capable of detoxifying (among other substrates) glucosinolates, a group of chemical defense compounds produced mainly by plant species belonging to the Brassicaceae. In this paper, changes in expression level of three B. tabaci GST genes (BtGSTs) were monitored after the insects were allowed to switch between Brassicaceae and cotton hosts. Our analysis revealed a significant increase in the expression of one gene, BtGST2, after switching from cotton to a Brassicaceae host (1.97- and 2.08-fold for white mustard and cabbage, respectively). In addition, a significant decrease in BtGST2 expression (0.53-fold) was observed during switching from white mustard to cotton. A significant elevation in the expression of BtGST2, similar to the one observed when B. tabaci adult switched from feeding on cotton to feeding on white mustard, was observed when the nitrile 4-Hydroxybezyl cyanide was added to the artificial diet. 4-Hydroxybezyl cyanide is a toxic degradation product of Sinalbin, the major glucosinolate in white mustard. Taken together, these findings fit well our expectations from a detoxification system of generalist insect herbivores, because the ability to "turn on" the detoxification system only when required confers an adaptive plasticity that enables generalist insects to optimize their fitness according to the levels of toxins in their environment.

Affiliations: 1: Department of Entomology, Faculty of Agriculture, The Hebrew University of Jerusalem morin@agri.huji.ac.il

10.1560/IJPS.58.2.93
/content/journals/10.1560/ijps.58.2.93
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps.58.2.93
Loading

Data & Media loading...

1. Agianian, B., Tucker, P. A., Schouten, A., Leonard, K., Bullard, B., Gros, P. 2003. Structure of a Drosophila Sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J. Mol. Biol. 326: 151-165.
2. Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol. 127: 1449-1458.
3. Bernays, E. A., Chapman, R. F. 2000. Plant secondary compounds and grasshoppers: Beyond plant defenses. J. Chem. Ecol. 26: 1773-1794.
4. Bones, A. M., Rossiter, J. T. 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant 97: 194-208.
5. Borek, V., Morra, M. J. 2005. Ionic thiocyanate (SCN-) production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J. Agr. Food Chem. 53: 8650-8654.
6. Bridges, M., Jones, A. M., Bones, A. M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Karapapa, V. K., Watts, N., Rossiter, J. T. 2002. Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc. R. Soc. London Sci. Ser. B 269: 187-191.
7. Brown, J. K., Frohlich, D. R., Rosell, R. C. 1995. The sweet potato or silver leaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 40: 511-534.
8. Brown, R. P., Berenbaum, M. R., Schuler, M. A. 2004. Transcription of a lepidoteran cytochrome P450 promoter is modulated by multiple elements in its 5' UTR and repressed by 20-hydroxyecdysone. Insect Mol. Biol. 13: 337-347.
9. Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., Oakeshott, J. G. 2006. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15: 615-636.
10. Clayton, J. D., Cripps, R. M., Sparrow, J. C., Bullard, B. 1998. Interaction of troponin-H and glutathione S-transferase-2 in the indirect flight muscles of Drosophila melanogaster. J. Muscle Res. Cell Motil. 19: 117-127.
11. Despres, L., David, J. P., Gallet, C. 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22: 298-307.
12. Enayati, A. A., Ranson, H., Hemingway, J. 2005. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 14: 3-8.
13. Fordyce, J. A., Agrawal, A. A. 2001. The role of plant trichomes and caterpillar group size on growth and defense of the pipevine swallowtail Battus philenor. J. Anim. Ecol. 70: 997-1005.
14. Francis, F., Vanhaelen, N., Haubruge, E. 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. 58: 166-174.
15. Habig, W. H., Pabst, M. J., Jakoby, W. B. 1974. Glutathione Stransferases. J. Biol. Chem. 249: 7130-7139.
16. Harris, K. F., PesicVan Esbroeck, Z., Duffus, J. E. 1996. Morphology of the sweet potato whitefly, Bemisia tabaci (Homoptera, Aleyrodidae) relative to virus transmission. Zoomorphology 116: 143-156.
17. Husebye, H., Chadchawan, S., Winge, P., Thangstad, O. P., Bones, A. M. 2002. Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol. 128: 1180-1188.
18. Janssen, J. A. M., Tjallingii, W. F., van Lenteren, J. C. 1989. Electrical recording and ultrastructure of stylet penetration by the greenhouse whitefly. Entomol. Exp. Appl. 52: 69-81.
19. Jiang, Y. X., Lei, H., Collar, J. L., Martin, B., Muniz, M., Fereres, A. 1999. Probing and feeding behavior of two distinct biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on tomato plants. J. Econ. Entomol. 92: 357-366.
20. Jiang, Y. X., Walker, G. P. 2001. Pathway phase waveform characteristics correlated with length and rate of stylet advancement and partial stylet withdrawal in AC electrical penetration graphs of adult whiteflies. Entomol. Exp. Appl. 101: 233-246.
21. Johnson, K. S. 1999. Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist Saturniid silkmoths. J. Chem. Ecol. 25: 253-269.
22. Johnson, D. D., Walker, G. P. 1999. Intracellular punctures by the adult whitefly Bemisia argentifolii on DC and AC electronic feeding monitors. Entomol. Exp. Appl. 92: 257-270.
23. Khasdan, V., Levin, I., Rosner, A., Morin, S., Kontsedalov, S., Maslenin, l., Horowitz, A. R. 2005. DNA markers for identifying biotypes B and Q of Bemisia tabaci and studying population dynamics. B. Entomol. Res. 95: 605-613.
24. Koroleva, O. A., Davies, A., Deeken, R., Thorpe, M. R., Tomos, A. D., Hedrich, R. 2000. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 124: 599-608.
25. Leshkowitz, D., Gazit, S., Reuveni, E., Ghanim, M., Czosnek, H., McKenzie, C., Shatters Jr., R. G., Brown, J. K. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and nonviruliferous) cDNA libraries. BMC Genomics 7: 79.
26. Li, X., Berenbaum, M. R., Schuler, M. A. 2002. Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol. Biol. 11: 343-352.
27. Li, X., Schuler, M. A., Berenbaum, M. R., 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52: 231-253.
28. Liu, T. X. 2000. Population dynamics of Bemisia argentifolii (Homoptera: Aleyrodidae) on spring collard and relationship to yield in the lower Rio Grande valley of Texas. J. Econ. Entomol. 93: 750-756.
29. Marchler-Bauer, A., Bryant, S. H. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32: W327-W331.
30. McDonnell, C. M., Brown, R. P., Berenbaum, M. R., Schuler, M. A. 2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem. Molec. 34: 1129-1139.
31. Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Lu, S., Marchler, G. H., Mullokandov, M., Song, J. S., Tasneem, A., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Bryant, S. H. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucl. Acids. Res. 37: D205-210.
32. Morin, S., Ghanim, M., Zeidan, M., Czosnek, H., Verbeek, M., van den Heuvel, J. 1999. A GroEL homologue from endosymbiotic bacteria of Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256: 75-84.
33. Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M. V., et al. 2002. Evolution of supergene families associated with insecticide resistance. Science 298: 179-181.
34. Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99: 11223-11228.
35. Rauch, N., Nauen, R. 2004. Characterization and molecular cloning of a glutathione S-transferase from the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 34: 321-329.
36. Raybould, A. F., Moyes, C. L. 2001. The ecological genetics of aliphatic glucosinolates. Heredity 87: 383-391.
37. Sheehan, D., Meade, G., Foley, V. M., Dowd, C. A. 2001. Structure, function and evolution of glutathione transferases: implications for classification of nonmammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1-16.
38. Singh, S. P., Coronella, J. A., Benes, H., Cochrane, B. J., Zimniak, P. 2001. Catalytic function of Drosophila melano-gaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur. J. Biochem. 268: 2912-2923.
39. Swofford, D. L., 2002. PAUP* 4.0 beta version: Phylogenetic analysis and using parsimony (and other methods). Sinauer Associates Inc Sunderland Massachusetts USA.
40. Thangstad, O. P., Gilde, B., Chadchawan, S., Seem, M., Husebye, H., Bradley, D., Bones, A. M. 2004. Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol. Biol. 54: 597-611.
41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
42. Thompson, G. A., Goggin, F. L. 2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 57: 755-766.
43. Vontas, J., David, J. P., Nikou, D., Hemingway, J., Christophides, G. K., Louis, C., Ranson, H. 2007. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol. Biol. 16: 315-324.
44. Wadleigh, R. W., Yu, S. J. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14: 1279-1288.
45. Walker, G. P., Perring, T. M. 1994. Feeding and oviposition behavior of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Ann. Entomol. Soc. Am. 87: 363-374.
46. Wittstock, U., Gershenzon, J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Plant Biol. 5: 300-307.
47. Wittstock, U., Halkier, B. A. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7: 263-270.
48. Wittstock, U., Agerbirk, N., Stauber, EJ., Olsen, CE., Hippler, M., Mitchell-Olds, T., Gershenzon, J., Vogel, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. U. S. A. 101: 4859-4864.
49. Yu, S. J. 1983. Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworms. Pestic. Biochem. Phys. 19: 330-336.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps.58.2.93
Loading

Article metrics loading...

/content/journals/10.1560/ijps.58.2.93
2010-05-18
2018-06-23

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation