Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The potential of genetic diversity and the effect of geographically isolated resources in olive breeding

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

This study analyses the variability and sources of diversity within the Olea europaea L. The highest distribution of wild and cultivated olives is around the Mediterranean basin. Various subspecies have been identified morphologically, and more recently through molecular markers, among both wild and cultivated olives. Domestication of the olive was probably initiated in the eastern regions of Mediterranean basin, but selections for domestic use were performed independently at various locations. Based on the molecular analysis, a considerable mixture of the genomes of both wild and domesticated olive types occurred. Starting thousands of years ago a dispersion of olives took place, mainly in the old world. Many olive stands developed isolated from other olive types, and as a result are based on multiplication and crossovers of the original genome. These isolated geographical populations are presently referred to as different Olea europaea subspecies. Over multiple generations, these isolated populations developed resistance to specific adverse biotic and abiotic environmental conditions. The potential and significance of using these geographically isolated olive subspecies in olive breeding programs for the future industry is discussed.

Affiliations: 1: Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture and Envirohmental Sciences, The Hebrew University of Jerusalem E-mail: ; 2: Institute of Plant Science, Agricultural Research Organization—The Volcani Center Institute of Plant Science ; 3: Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem


Full text loading...


Data & Media loading...

1. Amane, M., Lumaret, R., Hany, V., Ouazzani, M., Debain, C., Vivier, G., Deguilloux, M.F. 1999. Chloroplast-DNA variation in cultivated and wild olive (Olea europaea L.). Theor. Appl. Genet. 99: 133-139.
2. Angiolillo, A., Mencuccini, M., Baldoni, L. 1999. Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor. Appl. Genet. 98: 411-421.
3. Bandeij, D., Jakse, J., Javornik, B. 2004. Assesment of genetic variation of olive microsatellite and AFLP markers. Euphytica 136: 93-102.
4. Baldoni, L., Pellagrini, A., Mencuccini, M., Angiolillo, A., Mulas, M. 2000. Genetic relation ships among cultivated and wild olives revealed by AFLP markers. Acta Hortic. 521: 275-284.
5. Baldoni, L., Guererro, C., Sossy-Aloui, K., Abbott, A.G., Angioillo, A., Lumart, R. 2002. Phylogenetic relationships among Olea species based on nucleotide variation at a non-coding chloroplast DNA region. Plant Biology 4: 346-351, doi: 10.1055/s-2002-32338.
6. Belaj, A., Trujillo, I., De la Rosa, R., Rallo, L. 1999. Selection of RAPD markers for cultivar identification. Aust. Olive Grower 10: 27-28.
7. Belaj, A., Sativic, Z., Rallo, L., Trujillo, I. 2002. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor. Appl. Genet. 105: 639-644.
8. Belaj, A., Munoz-Diez, C., Baldoni, L., Porceddu, A., Barranco, D., Stovic, Z. 2007. Genetic diversity and population structure of wild olives from the north-west Mediterranean assessed by SSR markers. Ann. Bot. 100: 449-458.
9. Besnard, G., Berville, A. 2000. Multiple origin of Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Life Sci. 323: 173-181.
10. Besnard, G., Khadari, B., Baradat, P., Berville, A. 2002. Combination of chloroplast and mitochondrial DNA polymorphisms to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor. Appl. Genet. 105: 139-144.
11. Besnard, G., Christin, P.A., Baali-Cherif, D., Bouguedoura, N. Anthelme, F. 2007. Spatial genetic structure in the laperrine's olive (Olea europaea subsp. laperrinei), a long-living tree from the central Saharan mountains. Heredity 99: 649-657.
12. Besnard, G., Garcia-Verdugo, C., Robio de Casas, R., Treier, U.A., Galland, N.,Vargas, P. 2008. Polyploidy in the olive complex (Olea europaea): Evidence from flow cytometry and nuclear microsatellite analysis. Ann. Bot. 101: 25-30.
13. Bogani, P., Cavalieri, D., Petruccelli, L., Roselli, G. 1994. Identification of olive tree cultivars by using random amplifies polymorphic DNA. Acta Hortic. 356: 98-101.
14. Bronzini de Caraffa, V., Maury, J., Gambotti, C., Berton, C., Berville, A., Giannettini, J. 2002. Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olive from western and eastern Mediterranean. Theor. Appl. Genet. 104: 1209-1216.
15. Breton, C. Medail, F., Pinatel, C., Breville, A. 2005. Olive-oleaster gene flow and risks of fertility in olive. In: Gressel, J., ed. Crop fertility and volunteerism, a threat to food security in the transgenic era? CRC Press, Boca Raton, pp. 231-234.
16. Breton, C., Tersac, M., Berville, A. 2006. Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Pilo-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J. Biogeography 33: 1916-1928.
17. Breton, C., Guerin, J., Ducatillion, C., Medail, F., Kull, A.C., Berville, A. 2008. Taming the wild and wilding the tame: tree breeding and dispersal in Australia and the Mediterranean. Plant Science 175: 197-205.
18. Browicz, K., Zielinski, J. 1990. Chorology of trees and shrubs in south-west Asia and adjacent territories. Vol. 7. Polish Scientific Publishers, Warszawa-Poznan, pp. 13-15.
19. Caruso, G. 1882. Monografia dell'Olivo, Enc. Agr. Ital. parte V, Torino, U.T.E/T.
20. Chevalier, A. 1948. L'origine de I'olivier cultive et ses variations. Rev. Int. Bot. Appl. Agri. Trop. 28: 1-25.
21. Ciferri, R. 1941. Il genereOlea e l'origine dell'Olea europaea. L'Olivicoltore, n. 8.
22. Connell, J.H. 1994. History and scope of the olive industry. In: Ferguson, L., Sibbett, G.S., Martin G.C. eds. Olive production manual. Publication 3353, Univ. Calif. Dev. Agric. Resources, Oakland, CA USA. pp. 1-9.
23. Darlington, C.D. 1939. The evolution of genetic systems. Cambridge University Press, Cambridge.
24. Flahault, C. 1886. L'Olivier. Ann. Ecole Nat. Agric. Montpellier, tom. II,
25. Green, P.S. 2002. A revision of Olea L. (Oleaceae). Kew Bull. 57: 91-140.
26. Green, P.S., Wickens, G.E. 1989. The Olea europaea complex. In: Tan, K., ed. The Davis and Hedge Festschrift. Edinburgh Univ. Press pp. 287-299.
27. Guerin, J., Collins, G., Sedgley, M. 2000. Selection and breeding of olive cultivars. Outlook Agric. 29: 264-269.
28. Hannachi, H., Brenton, C., Msallem, M., Ben El Hadj, S., El Gazzah, M., Berville, A. 2008. Differences between native and introduced olive cultivars as revealed by morphology of drupes, oil composition and SSR polymorphisms: a case study in Tunisia. Sci. Hortic. 116: 280-290.
29. Hannachi, H., Smmerlatte, H., Breton, C., Msallem, M., El Gazzah, M., Ben El Hadj, S., Berville, A. 2009. Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet. Res. Crop. Evol. 59: 393-403.
30. Hess, J., Kadereit, J.W., Vargas, P. 2000. The colonization history of Olea europaea L. in Macronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Molec. Ecol. 9: 857-868.
31. Lavee, S., Avidan, B. 2002. Olive germplasm development past and present approach to genetic improvement. Acta Hortic. 356: 47-56.
32. Lavee, S., Harshemesh, H., Haskal, A., Meni, Y., Wodner, M., Ogrodovich, A., Avidan, B., Wismaman, Z., Avidan, N. and Trapero Casas, A. 1999. ‘Maalot’ a new orchard-resistant cultivar to peacock eye leaf spot (Spilocaea oleagina Cast.). Olivae 78: 51-59.
33. Liphschitz, N., Gophna, R., Hartman, H., Biger, G. 1991. The beginning of olive (Olea europaea) cultivation in the old world: areassessment. J. Archaeol. Sci. 18: 441-453.
34. Lumaret, R., Ouazzani, N. 2001. Ancient wild olives in Mediterranean forests. Nature 413: 700.
35. Lumaret, R., Ouazzani, N., Michaud, H., Villemur, P. 1997. Cultivated olives and oleaster: two very closely connected parents of the same species (Olea europaea). Evidence from enzyme polymorphism. Bocconea 7: 39-42.
36. Lumaret, R., Ouazzani, N., Michaud. H., Vivier, G., Deguilloux, M.F., Di Giusto, F. 2004. Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean basin. Heredity 92: 343-351.
37. Maley, J. 1980. Les changements climatoques de la fin du Tertiaire en Afrique: leur consequence sur l'apparition du Sahara et sa vegetation. In: Williams, M., Faure, H., eds. The Sahara and the Nile. A.A. Balkema, Rotterdam, Holland.
38. Medail, F., Quezel, P., Besnard, G., Khadari, B. 2001. Systematics, ecology and phlogeographic significance of Olea europaea L. ssp. maroccana. Bot. J. Linn. Soc. 137: 249-266.
39. Mekuria, G., Collins, G., Sedgley, M. 2002. A genetic diversity within an isolated olive (Olea europaea L.) population in relation to feral spread. Sci. Hortic. 94: 91-105.
40. Muzzalupo, I., Fodale, A., Mule, R., Caravita, M.A., Salimonti, A., Pellegrino, M., Perri, E. 2007. Genetic diversity and relationships in Sicilian olive germplasm collections as determined by RAPD markers. Adv. Hort. Sci. 21: 35-40.
41. Ouazzani, N., Lumaret, R., Villemur, P., Di Giusto, F. 1993. Leaf allozyme variation in cultivated and wild olive tree (Olea europaea L.). J. Hered. 84: 34-42.
42. Ouazzani, N., Lumaret, R., Villemur, P. 1994. An evaluation of approach the genetic variability of olive tree using enzymatic markers. Acta Hortic. 356: 91-94.
43. Stebbins, G.L. 1971. Chromosomal evolution in plants. Arnold, London, 216 pp.
44. Turrill, W.B. 1951. Wild and cultivated olives. Kew Bull. 3: 437-442.
45. Vargas, P., Kadereit, J.W. 2001. Molecular fingerprinting evidence (ISSR, inter-simple sequence repeats) for wild status of Olea europaea L. (Oleaceae) in the Eurosibberian north of the Iberian peninsula. Flora 196: 142-152.
46. Wiesman, Z., Avidan, N., Lavee, S., Quebedeaux, B. 1998. Molecular characterization of common olive varieties in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. J. Amer. Soc. Hort. Sci. 123: 837-841.
47. Zohary, D. 1994. The wild genetic resources of cultivated olive. Acta Hortic. 356: 62-65.
48. Zohary, D. 1997. Genetic systems: an overview. Bocconea 7: 127-131.
49. Zohary, D., Hopf, M. 1993. Domestication of plants in the old world. Oxford Univ. Press. pp. 280.
50. Zohary, D., Spiegel-Roy, P. 1975. Beginning of fruit growing in the old world. Sci. 187: 319-327.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation