Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Potential for contamination of crops by microbial human pathogens introduced into the soil by irrigation with treated effluent

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

In arid and semiarid regions throughout the world, shortage of water necessitates utilization of marginal water for agricultural irrigation. Because of its availability and relatively low cost, treated wastewater is commonly considered as an alternative water source for agricultural needs. Application of treated wastewater for agricultural irrigation may result in exposure of soil to pathogens, creating potential public health problems. Raw sewage water is known to contain a variety of human pathogens. Although their concentrations decrease during the wastewater reclamation process, the secondary treated effluents most commonly used for irrigation today still contain bacterial human pathogens. Therefore, irrigation with treated effluents introduces bacterial human pathogens to the soil. Although not in their natural host, human pathogenic bacteria are capable of surviving long periods of time in soil and water and thereby have the potential to contaminate crops in the field. Therefore, there is a risk of direct contamination of crops by human pathogens from the treated effluents used for irrigation, as well as a risk of indirect contamination of the crops from contaminated soil at the agricultural site. Bacterial human pathogens were recently demonstrated to have the ability to enter plants through their roots and translocate and survive in aerial plant tissues. The practical implications of these findings for food safety no doubt depend on the ability of bacterial pathogenic microorganisms to survive and multiply in the irrigated soil, in the water, and in the crop.

Affiliations: 1: Institute of Soil, Water and Environmental Sciences, The Volcani Center


Full text loading...


Data & Media loading...

1. Armon, R., Gold, D., Brodsky, M., Oron, G. 2002. Surface and subsurface irrigation with effluents of different qualities and presence of Cryptosporidium oocysts in soil and on crops. Water Sci. Tech. 46: 115-122.
2. Ashbolt, N. J. 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicol. 198: 229-238.
3. Assadian, N. W., Di Giovanni, G. D., Enciso, J., Iglesias, J., Lindemann, W. 2005. The transport of waterborne solutes and bacteriophage in soil subirrigated with a wastewater blend. Agri. Ecosyst. Environ. 111: 279-291.
4. Baloda, S. B., Christensen, L., Trajceversuska, S. 2001. Persistence of a Salmonella enterica serovar Typhimurium DT12 clone in a piggery and in agricultural soil amended with Salmonella-contaminated slurry. Appl. Environ. Microbiol. 67: 2859-2862.
5. Bernstein, N, Kafkafi, U. 2000. Root growth under salinity stress. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant roots—the hidden half. Marcel Dekker, NY, pp. 787-805.
6. Bernstein, N., Läuchli, A., Silk, W. K. 1993a. Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. I. Elongation growth. Plant Physiol. 103: 1107-1114.
7. Bernstein, N., Silk, W. K., Läuchli, A. 1993b. Growth and development of sorghum leaves under conditions of NaCl stress. Spatial and temporal aspects of leaf growth inhibition. Planta 191: 433-439.
8. Bernstein, N., Bar Tal, A., Friedman, H., Snir, P., Ilona, R., Chazan, A., Ioffe, M. 2006. Application of treated wastewater for cultivation of roses (Rosa hybrida) in soil-less culture. Sci. Hortic. 108: 185-193.
9. Bernstein, N, Sela, S., Neder-Lavon, S. 2007a. Assessment of contamination potential of lettuce by Salmonella enterica serovar Newport added to the plant growing medium. J. Food Protec. 70: 1717-1722.
10. Bernstein, N., Sela, S., Neder-Lavon, S. 2007b. Effect of irrigation regimes on persistence of Salmonella enterica serovar Newport in small experimental pots designed for plant cultivation. Irrig Sci. 26: 1-8.
11. Bernstein, N., Sela, S., Pinto, R., Ioffe, M. 2007c. Evidence for internalization of Escherichia coli into the aerial parts of maize via the root system. J. Food Prot. 70: 471-475.
12. Bernstein, N., Guetsky, R., Friedman, H., Bar-Tal, A., Rot, I. 2008. Monitoring bacterial populations in agricultural greenhouse production system irrigated with reclaimed wastewater. J. Hortic. Sci. Biotechnol. 83: 821-827.
13. Blumenthal, U. J., Mara, D. D., Peasey, A., Ruiz-Palacios, G., Stott, R. 2000. Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bull. W. H. O. 78: 1104-1116.
14. Bole, J. B. 1977. Uptake of tritiated water and phosphorus-32 by roots of wheat and rape. Plant Soil 46: 297-307.
15. Brandl, M. T., Mandrell, R. E. 2002. Fitness of Salmonella enterica serovar Thompson in the cilantro phyllosphere. Appl. Environ. Microbiol. 68: 3614-3621.
16. Caldwell, M. M. 1994. Exploiting nutrients in fertile soil microsites. In: Caldwell, M. M., Pearcy, R. W., eds. Exploitation of environmental heterogeneity by plants. Academic press, San Diego, pp. 325-347.
17. Carr, R. M., Blumenthal, U. J., Mara, D. D. 2004. Guidelines for the safe use of wastewater in agriculture: revisiting WHO guidelines. Water Sci. Technol. 50: 31-38.
18. Chandler, D. S., Craven, J. A. 1980. Relationship of soil moisture to survival of Escherichia coli and Salmonella typhimurium in soils. Aust. J. Agric. Res. 31: 547-555.
19. Cooley, M. B., Miller, W. G., Mandrell, R. E. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69: 4915-4926.
20. Cote, C., Quessy, S. 2005. Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers. J. Food Prot. 68: 900-905.
21. Crane, S. R., Westerman, P. W., Overcash, M. R. 1981. Die off of fecal indicator organisms following land application of poultry manure. J. Environ. Qual. 9: 531-537.
22. Dong, Y., Iniguez, A. L., Ahmer, B. M., Triplett, E. W. 2003. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl. Environ. Microbiol. 69: 1783-90.
23. Environmental Protection Agency (EPA). 2004. Guidelines for water reuse. Washington, DC: Environmental Protection Agency. Publication no. EPA/625/R-04/108. Available at:
24. Evans, M. R., Owens, J. D. 1972. Factors affecting the concentration of faecal bacteria in land-drainage water. J. Gen. Microbiol. 71: 477-485.
25. Feigin, A., Ravina, I., Shalhevet, J. 1991. Irrigation with treated sewage effluents. Management for environmental protection. Adv. Ser. Agric. Sci. 17. Pub Springer-Verlag.
26. Filip, Z., Kaddu-Mulindwa, D., Milde, G. 1988. Survival of some pathogenic and facultative pathogenic bacteria in groundwater. Water Sci. Technol. 20: 227-231.
27. Fine, P., Halperin, R., Hadas, E. 2006. Economic considerations for wastewater upgrading alternatives: an Israeli test case. J. Environ. Manag. 78: 163-169.
28. Franz, E, van Diepeningen, A. D., de Vos, O. J., van Bruggen, A. H. C. 2005. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce. App. Environ. Microbiol. 71: 6165-6174.
29. Franz, E, Visser, A. A., Van Diepeningen, A. D., Klerks, M. M., Termorshuizen, A. J., van Bruggen, A. H. 2006. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 24: 106-112
30. Friedman, H., Bernstein, N., Bruner, M., Rot, I., Ben-Noon, Z., Zuriel, A., Zuriel, R., Finkelstein, C., Umiel, N., Hagiladi, A. 2007. Application of secondary-treated effluents for cultivation of sunflower (Helianthus annuus L.) and celosia (Celosia argentea L.) as cut flowers. Sci. Hortic. 115: 62-69.
31. Gagliardi, J. V., Karns, J. S. 2000. Leaching of Escherichia coli O157:H7 in diverse soils under various agricultural management practices. Appl. Environ. Microbiol. 66: 877-883.
32. Gagliardi, J. V., Karns, J. S. 2002. Persistence of Escherichia coli O157:H7 in soil and on plant roots. Environ. Microbiol. 4: 89-96.
33. Gerba, C. P., Wallis, C., Melnick, J. L. 1975. Fate of wastewater bacteria and viruses in soil. J. Irrig. Drainage Eng. 101: 157-174.
34. Guo X., van Iersel, M. W., Chen, J., Brackett, R. E., Beuchat, L. R. 2002. Evidance of association of Salmonella with tomato plants grown hydroponically in inoculated nutrient solution. Appl. Environ. Mocrobiol. 68: 3639-3643.
35. Howell, J. M., Coyne, M. S., Cornelius, P. L. 1996. Effect of sediment particle size and temperature on fecal bacteria mortality rates and the fecal coliform/fecal streptococci ratio. J. Environ. Qual. 25: 1216-1220.
36. Hussain, I., Raschid, L., Hanjra, M. A., Marikar, F., van der Hoek, W. 2001. A framework for analyzing socio-economic, health and environmental impacts of wastewater use in agriculture in developing countries. IWMI Working Paper no. 26. International Water Management Institute (IWMI), Colombo, Sri Lanka, 31 pp.
37. Israel Ministry of Health 2001. Irrigation with effluents standards, The Israeli Ministry of Health principles for giving permit, for irrigation with effluents (treated waste water), English translation by the Palestinian Hydrology Group and Ramy Halperin, Israeli Ministry of Health. Jerusalem, Israel.
38. Islam, M., Morgan, J., Doyle, M. P., Phatak, S. C., Millner, P., Jiang, X. 2004. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 70: 2497-2502.
39. Jablasone, J., Warriner, K., Griffiths, M. 2005. Interactions of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes with plants cultivated in a gnotobiotic system. Int. J. Food Microbiol. 99: 7-18.
40. Jamieson, R. C., Gordon, R. J., Sharples, K. E., Stratton, G. W., Madani, A. 2002. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review. Can. Biosys. Eng. 44: 1-9.
41. Jiang, X., Morgan, J., Doyle, M. P. 2002. Fate of Escherichia coli O157:H7 in manure-amended soil. Appl. Environ. Microbiol. 68: 2605-2609.
42. Johannessen, G. S., Bengtsson, G. B., Heier, B. T., Bredholt, S., Wasteson, Y., Rørvik, L. M. 2005. Potential uptake of Escherichia coli O157:H7 from organic manure into crisphead lettuce. Appl. Environ. Microbiol. 71: 2221-2225.
43. Joy, D. M., Lee, H., Reaume, C. M., Whitely, H. R., Zelin, S. 1998. Microbial contamination of subsurface tile drainage water from field applications of liquid manure. Can. Agri. Eng. 40: 153-160.
44. Kinde, H., Adelson, M., Ardans, A., Little, E. H., Willoughby, D., Berchtold, D., Read, D. H., Breitmeyer, R., Kerr, D., Tarbell, R., Hughes, E. 1997. Prevalence of Salmonella in municipal sewage treatment plant effluents in Southern California. Avian Dis. 41: 392-398.
45. Kirby, R. M., Bartram, J., Carr, R. 2003. Water in food production and processing: quantity and quality concerns. Food Control. 14: 283-299.
46. Kudva, I. T., Blanch, K., Hovda, C. J. 1998. Analysis of Escherichia coli O157-H7 survival in ovine or bovine manure and manure slurry. Appl. Environ. Microbiol. 64: 3166-3174.
47. Kutter, S., Hartmann, A., Schmid, M. 2006. Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol. Ecol. 56: 262-271.
48. Lapidot, A., Yaron, S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Protec. 72: 618-623.
49. Lazof, D. B., Bernstein, N. 1998. The NaCl-induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium nutrition. Adv. Bot. Res. 29: 113-189.
50. Leclerc, H., Schwartzbrod, L., Dei-Cas, E. 2002. Microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 28: 371-409.
51. Leskovar, D. I., Stoffella, P. J. 1995. Vegetable seedling root systems: morphology, development, and importance. HortScience. 30: 1153-1159.
52. Levy, G. J. 2011. Impact of long-term irrigation with treated wastewater on soil-structure stability—The Israeli experience. Isr. J. Plant Sci. 59: 95-104, this issue.
53. Macpherson, C. N., Gottstein, B., Geerts, S. 2000. Parasitic food-borne and water-borne zoonoses. Rev. Sci. Tech. 19: 240-258.
54. Maynard, U., Ouki, S., Williams, S. 1999. Tertiary lagoons: a review of removal mechanisms and performance. Water Res. 33: 1-13.
55. Mitscherlich, E., Marth, E. H. 1984. Microbial survival in the environment. Springer-Verlag. NY, 802 pp.
56. Mubiru, D. N., Coyne, M. S., Grove, J. H. 2000. Mortality of Escherichia coli O157:H7 in two soils with different physical and chemical properties. J. of Environ. Qual. 29: 1821-1825.
57. Natvig, E. E., Ingham, S. C., Ingham, B. H., Cooperband, L. R., Roper, T. R. 2002. Salmonella enterica serovar typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol. 68: 2737-2744.
58. Neves-Piestun, B. G., Bernstein, N. 2001. Salinity-induced inhibition of leaf elongation is not mediated by changes in cell-wall acidification capacity. Plant Physiol. 125: 1419-1428.
59. Neves-Piestun, B. G., Bernstein, N. 2005. Salinity induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Func. Plant Biol. 32: 141-152.
60. Nobel, P. S. 1994. Root-soil responses to water pulses in dry environmental heterogeneity by plants. In: Caldwell, M. M., Pearcy, R. W., eds. Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground. Academic Press, San Diego, pp. 285-304.
61. Oved, T., Shaviv, A., Goldrath, T., Mandelbaum, R. T., Minz, D. 2001. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 67: 3426-3433.
62. Pu, S., Beaulieu, J. C., Prinyawiwatkul, W., GE, B. 2009. Effects of plant maturity and growth media bacterial inoculum level on the surface contamination and internalization of Escherichia coli O157:H7 in growing spinach leaves. J. Food Protec. 11: 2313-2320.
63. Randall, L. P., Wray, C., Davies, R. H. 1999. Survival of verocytotoxin-producing Escherichia coli O157 under simulated farm conditions. Vet. Rec. 145: 500-501.
64. Reddy, K. R., Khaleel, R., Overcash, M. R. 1981. Behavior and transport of microbial pathogens and indicator organisms in soils treated with organic wastes. J. Environ. Qual. 10: 255-266.
65. Sacks, M., Bernstein, M. 2011. Utilization of reclaimed wastewater for irrigation of field grown melons by surface and subsurface drip irrigation. Isr. J. Plant Sci. 59: 159-169, this issue.
66. Samish, Z., Etinger-Tulczynska, R., Bick, M. 1962. The microflora within the tissue of fruits and vegetables. J. Food Sci. 28: 259-266.
67. Scott, C. A., Faraqui, N. I., Raschid-Sally, L. 2004. Wastewater use in irrigated agriculture: coordinating the livelihood and environmental realities. Pub. Wallingford, UK: CABI.
68. Seymour, I. J., Appleton, H. 2001. Foodborne viruses and fresh produce. J. Appl. Microbiol. 91: 759-773.
69. Shelef G., Halperin, R. 2002. The development of wastewater effluent quality requirements for reuse in agricultural irrigation in Israel. Regional Symposium on Water Recycling in Mediterranean Region, International Water Association (IWA), Iraklio, Greece. I: 443-449.
70. Shrestha, S., Kanwar, R. S., Cambardella, C., Moorman, T. B., Loynachan, T. E. 1997. Effect of swine manure application on nitrogen and bacterial leaching through repacked soil columns. ASAE Paper No. 97-2164. St. Joseph, MI: ASAE.
71. Sjogren, R. E. 1994. Prolonged survival of an environmental Escherichia coli in laboratory soil microcosms. Water Air Soil Pollut. 75: 389-403.
72. Smit, J., Nasr, J. 1992. Urban agriculture for sustainable cities: using wastes and idle land and water bodies as resources. Environ. Urban. 4: 141-152.
73. Smith, M. S., Thomas, G. W., White, R. E., Ritonga, D. 1985. Transport of Escherichia coli through intact and disturbed soil columns. J. Environ. Qual. 14: 87-91.
74. Solomon, E. B., Yaron, S., Matthews, K. R. 2002. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol. 68: 397-400.
75. Steele, M., Odumeru, J. 2004. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 67: 2839-2849.
76. Stoddard, C. S., Coyne, M. S., Grove, J. H. 1998. Fecal bacteria survival and infiltration through a shallow agricultural soil: timing and tillage effects. J. Environ. Qual. 27: 1516-1523.
77. Tannock, G. W., Smith, J. M. B. 1972. Studies on the survival of Salmonella Typhimurium and Salmonella Bovis-morbificans on soil and sheep faeces. Res. Vet. Sci. 13: 150-153.
78. Tate, R. L. 1978. Cultural and environmental factors affecting the longevity of Escherichia coli in histosols. Appl. Environ. Microbiol. 35: 925-929.
79. U. S. EPA. 1973. Water Quality Criteria. National Academy of Sciences Report to the United States Environmental Protection Agency. Washington DC. pp. 350-366.
80. U. S. EPA. 2004. Guidelines for water reuse. U. S. Environmental Protection Agency. EPA/625/R-04/108, pp. 241-286.
81. Van der Steen, P., Brenner, A., Shabta, Y., Oron. G. 2000. Improved fecal coliform decay in integrated duckweed and algal ponds. Water Sci. Tech. 42: 363-370.
82. Van Donsel, D. J., Geldreich, E. E., Clarke, N. A. 1967. Seasonal variations in survival of indicator bacteria in soil and their contribution to storm-water pollution. Appl. Microbiol. 15: 1362-1370.
83. Wachtel, M. R., Whitehand, L. C., Mandrell, R. E. 2002a. Association of Escherichia coli O157:H7 with pre-harvest leaf lettuce upon exposure to contaminated irrigation water. J. Food Prot. 65: 18-25.
84. Wachtel, M. R., Whitehand, L. C., Mandrell, R. E. 2002b. Prevalence of Escherichia coli associated with a cabbage crop inadvertently irrigated with partially treated sewage wastewater. J. Food Prot. 65: 471-475.
85. Waisel, Y., Eshel, A., Kafkafi, U. 2002. Plant roots: the hidden half. 2nd edition. Marcel Dekker, NY.
86. Warriner, K., Ibrahim, F., Dickinson, M., Wright, C., Waites, W. M. 2003. Interaction of Escherichia coli with growing salad spinach plants. J. Food Prot. 66: 1790-1797.
87. WHO, 1989. Health guidelines for the use of wastewater in agriculture and aquaculture. Report of a Scientific Group. Technical Report No. 778. Geneva, Switzerland.
88. WHO/UNICEF. 2000. Global water supply and sanitation assessment 2000 report. World Health Organization, United Nations Children's Fund: Geneva; 80 pp.
89. Zibilske, L. M., Weaver, R. W. 1978 Effect of environmental factors on survival of Salmonella typhimurium in soil. J. Environ. Qual. 7: 593-597.
90. Zobel, R. W. 1996. Genetic control of root systems. In: Waisel, Y. Eshel, A., Kafkafi, U., eds. Plant roots: the hidden half. Marcel Dekker, NY, pp. 21-30.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation