Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Estimation of phytoplankton concentration from downwelling irradiance measurements in water

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Downwelling irradiance is so far not used directly for the determination of water constituents, mainly due to the large and unpredictable fluctuations of the underwater light field induced by the water surface. The potential of a new analytical model, which can cope with such environmental influences, was analyzed for the estimation of phytoplankton concentration using data from two German lakes. It turned out that the model is able to determine phytoplankton concentration in these lakes above a threshold between 0.4 and 0.9 μg/1, depending on the phytoplankton class, and total pigment concentration (sum of chlorophyll-a and phaeophytin-a) with an uncertainty of 0.7 μg/1. This new in-situ spectroscopy method is particularily of interest for shallow waters, where it is difficult to apply the usual reflectance-based algorithms due to bottom influences.

Affiliations: 1: Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung


Full text loading...


Data & Media loading...

1. Albert, A., Gege, P. 2006. Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties. Appl. Opt. 45: 2331-2343.
2. Antoine, D., Siegel, D.A., Kostadinov, T., Maritorena, S., Nelson, N.B., Gentili, B., Vellucci, V., Guillocheau, N. 2011. Variability in optical particle backscattering in contrasting bio-optical oceanic regimes. Limnol. Oceanogr. 56: 955-973.
3. Babin, M., Morel, A., Fournier-Sicre, V., Fell, F., Stramski, D. 2003a. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 48: 843-859.
4. Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner, N. 2003b. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res., 108, C7.
5. Bidigare, R.R. Ondrusek, M.E. Morrow J.H., Kiefer, D.A. 1990. In vivo absorption of algal pigments. In: Spinrad, R., ed. Ocean optics X, SPIE, Bellingham, WA, pp. 290-302.
6. Binding, C.E., Jerome, J.H., Bukata, R.P., Booty, W.G. 2008. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sens. Environ. 112:1702-1711.
7. Bricaud, A., Morel, A., Prieur, L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26: 43-53.
8. Bowers, D.G., Evans, D., Thomas, D.N., Ellis, K., le, B., Williams, P.J. 2004. Interpreting the colour of an estuary. Estuarine, Coastal Shelf Sci. 59: 13-20.
9. Buiteveld, H., Hakvoort, J.H.M., Donze, M. 1994. The optical properties of pure water. SPIE Vol. 2258, Ocean Optics XII, 174-183.
10. Carder, K.L., Harvey, G.R., Ortner, P.B. 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 34: 68-81.
11. Chami, M., Shybanov, E.B., Churilova, T.Y., Khomenko, G.A., Lee, M.E.-G., Martynov, O.V., Berseneva, G.A., Korotaev, G.K. 2005. Optical properties of the particles in the Crimea coastal waters (Black Sea). J. Geophys. Res. 110: C11020. doi:10.1029/2005JC003008.
12. Dall'Olmo, G., Gitelson, A.A., Rundquist, D.C., Leavitt, B., Barrow, T., Holz, J. 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 96: 176-87.
13. Dekker, A.G., Peters, S.W.M. 1993. The use of the Thematic Mapper for the analysis of eutrophic lakes: A case study in The Netherlands. Int. J. Remote Sens. 14: 799-822.
14. Dera, J., Stramski, D. 1993. Focusing of sunlight by sea surface waves: new results from the Black Sea. Oceanologia 34: 13-25.
15. Gege, P. 1994. Gew-ässeranalyse mit passiver Fernerkundung: Ein Modell zur Interpretation optischer Spektralmessungen. Ph.D. Thesis. DLR-Forschungsbericht 1994-15, 171 pp.
16. Gege, P. 1998. Characterization of the phytoplankton in Lake Constance for classification by remote sensing. In: B-äuerle, E., Gaedke, U., eds. Lake Constance—Characterisation of an ecosystem in transition. Archiv für Hydrobiologie 53, pp. 179-193.
17. Gege, P. 2000. Gaussian model for yellow substance absorption spectra. Ocean Optics XV Conference, October 16-20, 2000, Monaco.
18. Gege, P. 2004a. The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra. Comput. Geosci. 30: 523-532.
19. Gege, P. 2004b. Improved method for measuring Gelbstoff absorption spectra. Proc. Ocean Optics XVII, Fremantle, West Australia.
20. Gege, P., Albert, A. 2006. A tool for inverse modeling of spectral measurements in deep and shallow waters. In: Richardson, L.L., LeDrew, E.F., eds. Remote sensing of aquatic coastal ecosystem processes: science and management applications. Springer, pp. 81-109.
21. Gege, P. 2012. Analytic model for the direct and diffuse components of downwelling spectral irradiance in water. Applied Optics 51: 1407-1419.
22. Gege, P., Pinnel, N. 2011. Sources of variance of downwelling irradiance in water. Appl. Opt. 50: 2192-2203.
23. Gitelson, A.A., Keydan, G., Shishkin, V. 1985. Inland waters quality assessment from satellite data in visible range of the spectrum. Sov. Remote Sens. 6: 28-36.
24. Gitelson, A.A., Gritz, U., Merzlyak, M.N. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160: 271-82.
25. Gitelson, A.A., Viña, A., Ciganda, V., Rundquist, D.C., Arkebauer, T.J. 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32: L08403.
26. Gitelson, A.A., Gurlin, D., Moses, W.J., Barrow, T. 2009. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environ. Res. Lett. 4: 1-5.
27. Gilerson, A.A., Gitelson, A.A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., Ahmed, S.A. 2010. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 18: 24109-24125.
28. Gordon, H., Morel, A. 1983. Remote assessment of ocean color for interpretation of satellite visible imagery. A review. Springer, New York, 144 pp.
29. Gregg, W.W., Carder, K.L. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr. 35: 1657-1675.
30. Grötsch, P., Gege, P. 2012. Determination of sensor depth from downwelling irradiance measurements. Proc. IGARSS, Munich, Germany, July 22-27, 2012.
31. Gurlin, D., Gitelson, A.A., Moses, W.J. 2011. Remote estimation of chl-a concentration in turbid productive waters—return to a simple two-band NIR-red model? Remote Sens. Environ. 115: 3479-3490.
32. Heege, T. 2000. Flugzeuggestützte Fernerkundung von Wasserinhaltsstoffen am Bodensee. Ph.D. thesis. DLR-Forschungsbericht 2000-40, 134 pp.
33. Heege, T., Fischer, J. 2004. Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme Can. J. Remote Sens. 30: 77-86.
34. Hieronymi, M., Macke, A. 2012. On the influence of wind and waves on underwater irrradiance fluctuations. Ocean Science 8: 455-471.
35. IOCCG. 2006. Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications. Lee, Z.-P., Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.
36. Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd ed. Cambridge University Press.
37. Kou, L., Labrie, D., Chylek, P. 1993. Refractive indices of water and ice in the 0.65-2.5μm spectral range. Appl. Optics 32: 3531-3540.
38. Laanen, M. 2007. Yellow matters—improving the remote sensing of coloured dissolved organic matter in inland freshwaters. Ph.D. thesis. Vrije Universiteit Amsterdam, 267 pp.
39. Lee, Z.P., Carder, K.L., Mobley, C.D., Steward, R.G., Patch, J.S. 1999. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 38: 3831-3843
40. Miksa, S., Gege, P., Heege, T. 2004. Investigation on the capability of CHRIS-PROBA for monitoring of water constituents in Lake Constance compared to MERIS. Proc. 2nd CHRIS-PROBA workshop, Frascati, Italy, April 28-30, 2004.
41. Morel, A. 1988. Optical modeling of the upper ocean in relation to ist biogenous content (case I waters). J. Geophys. Res. 93: 10,749-10,768.
42. Morel, A., Maritorena, S. 2001. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. 106: 7163-7180.
43. Moses, W.J., Gitelson, A.A., Berdnikov, S., Povazhnyy, V. 2009. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges. Environ. Res. Lett. 4: 045005.
44. Mueller, J.L. 2003. In-water radiometric profile mMeasurements and data analysis protocols. In: Mueller, J.L., Fargion, G.S., McClain, C.R., eds. Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume III, NASA, pp. 7-20.
45. Nusch, E. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie, Special issues: Advances in Limnology, Vol. 14: 14-36.
46. O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M., McClain C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103(C11): 24,937-24,953.
47. Pinnel, N. 2007. A method for mapping submerged macrophytes in lakes using hyperspectral remote sensing. PhD thesis. Technical University Munich, 165 pp.
48. Robinson, I.S. 2004. Measuring the Oceans from Space. Springer.
49. Rowan, K.S. 1989. Photosynthetic pigments of algae. Cambridge University Press.
50. Schalles, J.F. 2006. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations. In: Richardson, L.L., LeDrew, E.F. eds. Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications. Springer, pp. 27-79.
51. Schwarz, J.N., Kowalczuk, P., Kaczmarek, S., Cota, G.F., Mitchell, B.G., Kahru, M., Chavez, F.P., Cunningham, A., McKee, D., Gege, P., Kishino, M., Phinney, D.A., Raine, R. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia 44: 209-241.
52. Tilzer, M. 1983. The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr., 28: 833-846.
53. Yacobi, Y.Z., Moses, W.J., Kaganovsky, S., Sulimani, B., Leavitt, B.C., Gitelson, A.A. 2010. Chlorophyll a in turbid productive waters: testing the limits of NIR-Red algorithms. Proc. ‘ESA Living Planet Symposium’, Bergen, Norway 28 June-2 July 2010 (ESA SP-686, December 2010)
54. Yacobi, Y.Z., Moses, W.J., Kaganovsky, S., Sulimani, B., Leavitt, B.C., Gitelson, A.A. 2011. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water research 45: 2428-2436.
55. Zaneveld, J.R.V., Boss, E., Barnard, A. 2001. Influence of surface waves on measured and modeled irradiance profiles. Appl. Opt. 40: 1442-1449.
56. Zaneveld, J.R.V., Moore, C., Barnard, A.H., Walsh, I., Twardowski, M., Chang, G.C. 2004. Correction and analysis of spectral absorption data taken with the WET Labs AC-S. Proc. Ocean Optics XVII Conference, Fremantle, Australia, October 25-29, 2004.
57. Zepp, R.G., Schlotzhauer, P.F. 1981. Comparison of photochemical behaviour of various humic substances in water: III. Spectroscopic properties of humic substances. Chemosphere 10: 479-486.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation