Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Assessment of the water quality components in turbid estuarine waters based on radiative transfer approximations

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Bio-geo-optical data collected in the Neuse River Estuary, North Carolina, USA were used to develop a semi-empirical optical algorithm for assessing inherent optical properties associated with water quality components (WQCs). Three wavelengths (560, 665, and 709 nm) were explored for algorithm development. WQCs included chlorophyll a (Chl), volatile suspended solids (VSS), fixed suspended solids (FSS), total suspended solids (TSS), and absorption of chromophoric dissolved organic matter (aCDOM ). The relationships between the measured remote-sensing reflectance and the WQCs were derived based on radiative transfer model calculations. We simulated and analyzed the impact of CDOM absorption in the red and near infrared spectral domains, multiple scattering, and scattering phase function on the accuracy of WQCs prediction. The algorithm was validated by comparing experimental Chl dynamics with predicted values and a numerical comparison between measured and modeled Chl values. The numerical comparison yielded the highest correlation between predicted and measured WQCs for Chl (R 2 = 0.88) and the lowest for FSS (R 2 = 0.00), while the best and worst mean-normalized root-mean-squares errors were obtained for aCDOM (412.5) and FSS (35% and 59%, respectively). WQCs retrieval accuracy was typically significantly better at values of aTSS, red > 0.5 m-1.

Affiliations: 1: U.S. Environmental Protection Agency, National Exposure Research Laboratory, National Research Council ; 2: Institute of Marine Sciences, University of North Carolina at Chapel Hill


Full text loading...


Data & Media loading...

1. Aas, E. 1987. Two stream irradiance model for deep waters. Appl. Opt. 26: 2096-2101.
2. Aas, E., Højerslev, N.K. 1999. Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution. J. Geophys. Res. 104: 8015-8024.
3. Albert, A., Gege, P. 2006. Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties. Appl. Opt. 45: 2331-2343.
4. Anikonov, A.S., Ermolaev, S.Y. 1977. On diffuse light reflection from a semiinfinite atmosphere with a highly extended phase function. Vestnik LGU 7: 131-137.
5. Astoreca, R., Ruddick, K., Rousseau, V., Van Mol, B., Parent, J.-Y., Lancelot, C. 2006. Variability of the inherent and apparent optical properties in a highly turbid coastal area: impact on the calibration of remote sensing algorithms. EARSeL eProceedings 5: 1-17.
6. Babin, M., Stramski, D. 2002. Light absorption by aquatic particles in the near-infrared spectral region. Limnol. Oceanogr. 47: 911-915.
7. Borsuk, M.E., Stow, C.A., Reckhow, K.H. 2003. Integrated approach to Total Maximum Daily Load development for Neuse River Estuary using Bayesian Probability Network Model (Neu-BERN). ASCE Journal of Water Resources Planning and Management 131: 271-282.
8. Burkholder, J., Eggleston, D., Glasgow, H., Brownie, C., Reed, R., Janowitz, G., Posey, M., Melia, G., Kinder, C., Corbett, R., Toms, D., Alphin, T., Deamer, N., Springer, J. 2004. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems. Proc. Natl. Acad. Sci. USA 101: 9291-9296.
9. Boynton, G.C., Gordon, H.R. 2000. Irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: Raman-scattering effects. Appl. Opt. 39: 3012-3022.
10. Buzzelli, C.P., Ramus, J.R. Paerl, H.W. 2003. Ferry-based monitoring of surface water quality in North Carolina estuaries. Estuaries 26: 975-984.
11. Cauwer, V.D., Ruddick, K., Park, Y.J., Kyramarios, M. 2004. Optical remote sensing in support of eutrophication monitoring in the Southern North Sea. EARSeL eProceedings 3: 208-221.
12. Copeland, B.J., Gray, J. 1991. Status and trends of the Albemarle-Pamlico Estuary study. Tech. Report Number 90-01. Department of Environment, Health, and Natural Resources, Raleigh, NC State University, NC, USA.
13. Craig, S.E., Lohrenz, S.E., Lee, Z.P., Mahoney, K.L., Kirkpatrick, G.J., Schofield, O.M., Steward, R.G., 2006, Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Appl. Opt. 45: 5414-5425.
14. Curran, P.J., Steele, C.M. 2005. MERIS: the re-branding of an ocean sensor. Int. J. Remote Sens 26: 1781-1798.
15. Dall'Olmo, G., Gitelson, A.A., 2005, Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Appl. Opt. 44: 412-422.
16. Duffie, J.A., Beckman, W.A. 2006. Solar engineering of thermal processes, 3rd ed. Wiley & Sons, New York.
17. Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., eds., 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC.
18. Exell, R.H.B. 1981. A mathematical model for solar radiation in South-East Asia (Thailand). Solar Energy 26:161-168.
19. Forget, P. 2000. An analytical model of remote sensing reflectance in coastal zone and application to water constituents retrieval with MERIS. In: Proceedings of Ocean Optics XV Conference, 16-20 October 2000, Monaco (CD-ROM, No. 001039).
20. Gallegos, C.L., Jordan, T.E., Hines, A.H., Weller, D.E., 2005, Temporal variability of optical properties in a shallow, eutrophic estuary: seasonal and interannual variability. Estuar. Coast. Shelf S. 64: 156-170.
21. Gitelson, A.A., Schalles, J.F., Hladik, C.M. 2007. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 109: 464-472.
22. Gons, H.J. 1999. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 33: 1127-1133.
23. Gordon, H.R. 1973. Simple calculation of the diffuse reflectance of ocean. Appl. Opt. 12: 2803-2804.
24. Gordon, H.R. 1976. Radiative transfer in the ocean: a method for determination of absorption and scattering properties. Appl. Opt. 15: 2611-2613.
25. Gordon, H.R. 1992. Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile. Appl. Opt. 31: 2116-2129.
26. Gordon, H.R., Brown, O.B. 1974. Influence of bottom depth and albedo on the diffuse reflectance of a flat homogeneous ocean. Appl. Opt. 13: 2153-2159.
27. Gordon, H.R., Brown, O.B. 1975. Diffuse reflectance of the ocean: some effects of vertical structure. Appl. Opt. 14: 2892-2895.
28. Gordon, H.R., Brown, O.B., Jacobs, M.M. 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Appl. Opt. 14: 417-427.
29. Gordon, H.R., Brown, O.B., Evans, R.H., Brown, J.W., Smith, R.C., Baker, K.S., Clark, D.K. 1988. A semianalytical radiance model of ocean color. J. Geophys. Res. 93: 10909-10924.
30. Jerome, J.H., Bukata, R.P., Miller, J.R. 1996. Remote sensing reflectance and its relationship to optical properties of natural waters. Int. J. Remote Sens. 17: 3135-3155.
31. Haltrin, V.I. 1998a. Self-consistent approach to the solution of light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering. Appl. Opt. 37: 3773-3784.
32. Haltrin, V.I. 1998b. An analytical Fournier-Forand scattering phase function as an alternative to the Henyey-Greenstein phase function in hydrologic optics. In: Stein, T.I., ed., Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 11, July 6-10 1998, Seattle, WA, USA (Piscataway: IEEE), pp. 910-913.
33. Haltrin, V.I., Gallegos, S.C. 2003. About nonlinear dependence of remote sensing and diffuse reflectance coefficients of Gordon's parameter. In: Levin, I., Gilbert, G., eds., Proceedings of D. S. Rozhdestvensky Optical Society Current Problems in Optics of Natural Waters, II International Conference, 8-12 September 2003, St. Petersburg, Russia (St. Petersburg: State Optical Institute), pp. 363-369.
34. Hapke, B. 1993. Theory of reflectance and emittance spectroscopy. Cambridge University Press, New York.
35. Helyar, A.G. 2001. Equation of time
36. Højerslev, N.K. 2001. Analytic remote-sensing optical algorithms requiring simple and practical field parameter inputs. Appl. Opt. 40: 4870-4874.
37. Højerslev, N.K. 2004. Practical sea-water algorithms for fundamental bio-optical and remote sensing quantities. Int. J. Remote Sens. 25: 1539-1543.
38. Kirk, J.T.O. 1981. Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Aust. J. Mar. Freshwater Res. 32: 517-532.
39. Kirk, J.T.O. 1991. Volume scattering function, average cosines, and the underwater light field. Limnol. Oceanogr. 36: 455-467.
40. Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd ed. Cambridge University Press, NY.
41. Kokhanovsky, A.A., Sokoletsky, L.G. 2006a. Reflection of light from semi-infinite absorbing turbid media. Part 1: Spherical albedo. Color Res. Appl. 31: 491-497.
42. Kokhanovsky, A.A., Sokoletsky, L.G. 2006b. Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Res. Appl. 31: 498-509.
43. Kou, L., Labrie, D., Chylek, P. 1993. Refractive indices of water and ice in the 0.65 μm to 2.5 μm spectral range. Appl. Opt. 32: 3531-3540.
44. Lee, Z.P., Carder, K.L., Mobley, C.D., Steward, R.G., Patch, J.S. 1998. Hyperspectral remote sensing for shallow waters. 1. A semianalytical model. Appl. Opt. 37: 6329-6338.
45. Lee, Z.P., Carder, K.L., Mobley, C.D., Steward, R.G., Patch, J.S. 1999. Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 38: 3831-3843.
46. Lee, Z.P., Carder, K.L., Du, K.P. 2004. Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. Appl. Opt. 43: 4957-4964.
47. Levin, I.M. 1998. Sea radiance coefficient: estimate of the quasi-single approximation. Oceanology of the Russian Academy of Sciences 38: 855-858.
48. Mishchenko, M.I., Dlugach, J.M., Yanovitskij, E.G., Zakharova, N.T. 1999. Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. J. Quant. Spestrosc. Ra. 63: 409-432.
49. Mobley, C.D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 38: 7442-7455.
50. Mobley, C.D., Sundman, L.K., Boss, E. 2002. Phase function effects on oceanic light fields. Appl. Opt. 41: 1035-1050.
51. Mobley, C.D., Stramski, D., Boss, E. 2004. Optical modeling of ocean water: is the Case 1—Case 2 classification still useful? Oceanography 17: 60-67.
52. Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water). J. Geophys. Res. 93: 10,749-10,768.
53. Morel, A., Gentili, B. 1991. Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30: 4427-4438.
54. Morel, A., Gentili, B. 1993. Diffuse reflectance of oceanic waters. 2. Bidirectional aspects. Appl. Opt. 32: 6864-6879.
55. Morel, A., Gentili, B. 1996. Diffuse reflectance of oceanic waters. 3. Implication of bidirectionality for the remote-sensing problem. Appl. Opt. 35: 4850-4862.
56. Morel, A., Prieur, L. 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22: 709-722.
57. Morel, A., Maritorena, S. 2001. Bio-optical properties of oceanic waters: a reappraisal. J. Geophys. Res. 106: 7163-7180.
58. Morel, A., Antoine, D., Gentili, B. 2002. Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 41: 6289-6306.
59. Nicodemus, F. 1965. Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4: 767-775.
60. Otremba, Z. 2003. Relationships between the quantities which describe reflective features of both land and ocean areas. In: Levin, I., Gilbert, G., eds., Proceedings of D.S. Rozhdestvensky Optical Society Current Problems in Optics of Natural Waters II International Conference, 8-12 September, 2003, St. Petersburg, Russia (St. Petersburg: State Optical Institute), pp. 376-381.
61. Ouillon, S., Petrenko, A.A. 2005. Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea. Opt. Express 13: 2531-2548.
62. Paerl, H.W., Pinckney, J.L., Fear, J.M., Peierls, B.L. 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar. Ecol.: Prog. Ser. 166: 17-25.
63. Paerl, H.W., Bales, J.D., Ausley, L.W., Buzzelli, C.P., Crowder, L.B., Eby, L.A., Fear, J.M., Go, M., Peierls, B.L., Richardsoni, T.L., Ramus, J.S. 2001. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, Pamlico Sound, NC. Proc. Natl. Acad. Sci. USA 98: 5655-5660.
64. Paerl, H.W., Valdes, L.M., Piehler, M.F., Stow, C.A. 2006. Assessing the effects of nutrient management in an estuary experiencing climatic change: the Neuse River Estuary, NC, USA. Environ. Manage. 37: 422-436.
65. Peters, S.W.M., Pasterkamp, R., van de Woerd, H.J. 2002. A sensitivity analysis of analytical inversion methods to derive chlorophyll from MERIS spectra in case-II waters. In Proceedings of the Ocean Optics XVI Conference, 18-22 November 2002, Santa Fe, NM, USA (Arlington: Office of Naval Research), pp. 363-369.
66. Pope, R.M., Fry, E.S. 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36: 8710-8723.
67. Ruddick, K.G., Gons, H.J., Rijkeboer, M., Tilstone, G. 2001. Optical remote sensing of chlorophyll a in Case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Appl. Opt. 40: 3575-3585.
68. Quan, X., Fry, E.S. 1995. Empirical equation for the index of refraction of seawater. Appl. Opt. 34: 3477-3480.
69. Smyth, T. J., Moore, G. F., Hirata, T, Aiken, J. 2006. Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment. Appl. Opt. 45: 8116-8131.
70. Sokoletsky, L. 2003. In situ and remote sensing bio-optical methods for the estimation of phytoplankton concentration in the Gulf of Aqaba (Eilat). Ph.D. Thesis, Bar-Ilan University, Israel.
71. Sokoletsky, L. 2004. A comparative analysis of simple transfer approaches for aquatic environments. In: Proceedings of the 2004 ENVISAT and ERS Symposium, 6-10 September 2004, Salzburg, Austria. CD-ROM.
72. Sokoletsky, L. 2005. Comparative analysis of selected radiative transfer approaches for aquatic environments. Appl. Opt. 44: 136-148.
73. Sokoletsky, L., Gallegos, S. 2010. Towards development of an improved technique for remote retrieval of water quality components: an approach based on the Gordon's parameter spectral ratio. In: Proceedings of Ocean Optics—XX Conference, 27 September-1 October 2010, Anchorage, Alaska, USA. CD-ROM.
74. Sokoletsky, L.G., Kokhanovsky, A.A. 2005. Reflective characteristics of natural waters: the accuracy of selected approximations. In: Levin, I., Gilbert, G., eds., Proceedings of Current Problems in Optics of Natural Waters III International Conference, 12-16 September 2005, St. Petersburg, Russia, pp. 56-63.
75. Sokoletsky, L.G., Nikolaeva, O.V., Budak, V.P., Bass, L.P., Lunetta, R.S., Kuznetsov, V.S., Kokhanovsky, A.A. 2009. Comparison of different numerical and analytical solutions of the radiative-transfer equation for plane albedo with emphasis on the natural waters consideration. J. Quant. Spectrosc. Ra. 110: 1132-1146.
76. Sokoletsky, L.G., Lunetta, R.S., Wetz, M.S., Paerl, H.W. 2011. MERIS retrieval of water quality components in the turbid Albemarle-Pamlico Sound Estuary, USA. Remote Sens. 3: 684-707.
77. Spiegel, M.R., Stephens, L.J. 2008. Theory and problems of statistics, 4th ed. Schaum's Outline Series, McGraw-Hill, New York.
78. Stramska, M., Stramski, D., Mitchell, B.G., Mobley, C.D. 2000. Estimation of the absorption and backscattering coefficients from in-water radiometric measurements. Limnol. Oceanogr. 45: 628-641.
79. Toole, D.A., Siegel, D.A., Menzies, D.W., Neumann, M.J., Smith, R.C. 2000. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability. Appl. Opt. 39: 456-469.
80. Twardowski, M.S., Boss, E., Sullivan, J.M., Donaghay, P.L. 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89: 69-88.
81. Vähätalo, A. V., Wetzel, R.G., Paerl, H.W. 2005. Light absorption by phytoplankton and chromophoric dissolved organic matter in the drainage basin and estuary of the Neuse River, North Carolina (U.S.A.). Freshwater Biol. 50: 477-493.
82. van de Hulst, H.C. 1980. Multiple Light Scattering. Vols. 1 and 2. Academic Press, New York.
83. Welshmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39: 1985-1992.
84. Yacobi, Y.Z. Gitelson, A.A. 2000. Simultaneous remote measurement of chlorophyll and total seston in productive inland waters. Verhandlungen des Internationalen Verein Limnologie 27: 2983-2986.
85. Zaneveld, J.R.V. 1995. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties. J. Geophys. Res. 100: 13,135-14,142.
86. Zhang, Z., Voss, K.J. 2005. Comparisons of bidirectional reflectance distribution function measurements on prepared particulate surfaces and radiative-transfer models. Appl. Opt. 44: 597-610.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation