Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

The unique optical characteristics of chlorophyll a (Chl a) and the relatively easy procedures for its isolation and quantification are the reasons that Chl a is quite likely the most frequently measured biological substance in aquatic research. Development of analytical methods of quantification and commercialization of optical instruments were the impetus for the widespread measurement of Chl a in all aquatic environments. Chl a is often utilized as a proxy for the assessment of phytoplankton biomass, although it is by no means synonymous with phytoplankton biomass, usually expressed in terms of cellular carbon content or fresh weight. The modification of light reflected from a water surface by Chl a can be quantified in different types of water, and thus provides a basis for remote sensing of that pigment. Reflectance information recorded by satellite-carried sensors enables mapping of Chl a distribution, and due to the high frequency of data collection provides a database for estimation of phytoplankton dynamics over large areas, up to global coverage.

Affiliations: 1: Israel Oceanographic and Limnological Research, Yigal Allon Kinneret Limnological Laboratory


Full text loading...


Data & Media loading...

1. Abaychi, J.K., Riley, J.P. 1979. The determination of phytoplankton pigments by high-performance liquid chromatography. Anal. Chim. Acta 64: 525-527.
2. Behrenfeld, M.J., Falkowski, P.G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42: 1-20.
3. Bianchi, T.S., Engelhaupt, E., McKee, B., Miles, S., Elmgren, R., Hajdu, S., Savage, C., Baskaran, M. 2002. Do sedimerits from coastal sites accurately reflect time trends in water column phytoplankton? A test from -Himmerf-jarden Bay (Baltic Sea proper). Limnol. Oceanogr. 47: 1537-1544.
4. Bidigare, R.R, Ondrusek, M.E., Morrow, J.H., Kiefer, D.A. 1990. In vivo absorption properties of algal pigments, SPIE Vol. 1302, Ocean Optics X, pp. 290-302.
5. Bührer, H. 1991. Problems in estimation of pheophytine. Verh. Internat. Verein. Limnol. 24: 1259.
6. Chelton, D.B., Gaube, P., Schlax, M.G., Early, J.J., Samelson, R.M. 2011. The influence of onlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334: 328-332.
7. Colyer, C.L., Kinkade, C.S,. Viskari, P.J., Landers, J.P. 2005. Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. J. Anal. Bioanal. Chem. 382: 559-569.
8. Cullen, J.J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fisheries Aquat. Sci. 39: 791-803.
9. Dall'Olmo, G., Gitelson, A.A. 2005. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Appl. Optics 44: 412-422.
10. Duntley, S.Q. 1963. Light in the sea. J. Optic. Soc. Am. 53: 214-233.
11. Falkowski, P.G., Kiefer, D.A. 1985. Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J. Plankton Res. 7: 715-731.
12. Feldman, G.C., Kuring, N., Esaias, C.W., McClain, C.R., Elrod, J., Maynard, N., Endres, D., Evans, R., Brown, J., Walsh, S., Carle, M., Podesta, G. 1989. Ocean color: availability of the global set. Eos Trans. Am. Geophys. Union 70: 634-641.
13. Gieskes, W.W.C., Kraay, G.W. 1983. Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnol. Oceanogr. 28: 757-766.
14. Gitelson, A.A., Gurlin D., Moses, W.J., Yacobi, Y.Z. 2011. Remote estimation of chlorophyll-a concentration in inland, estuarine, and coastal waters. In: Weng, Q., ed. Advances in environmental remote sensing: sensors, algorithms and applications. CRC Press, Boca Raton, FL, chap. 18, pp. 449-478.
15. Gordon, H.R. 1976. Radiative transfer in the ocean: a method for determination of absorption and scattering properties. Appl. Optics 15: 2611-2613.
16. Gordon, H., Morel, A. 1983. Remote assessment of Ocean color for interpretation of satellite visible imagery. A review. Lecture notes on Coastal and Estuarine Studies 4. Springer-Verlag, Heidelberg.
17. Gregg, W.W., Casey, N.W., McClain, C.R. 2005. Recent trends in global ocean chlorophyll. Geophys. Res. Letters 32: L03606, doi: 10.1029/2004GL021808.
18. Harvey, H.W. 1934. Measurement of phytoplankton population. J. Mar. Biol. Assoc. UK 19: 761-773.
19. Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W., Strickland, J.D.H. 1965. Fluorometric determination of chlorophyll. J. Cons. Cons. Int. Explor. Mer. 30: 3-15.
20. Hovis, W.A., et al. 1980. Nimbus-7 coastal zone color scanner—system description and initial imagery. Science 210: 60-63.
21. Jeffrey, S.W. 1972. Preparation and some properties of crystalline chlorophyll c1 and c2 from marine algae. Biophys. Biochem. Acta 279: 15-33.
22. Jeffrey, S.W., Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191-194.
23. Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems, 2nd edition. Cambridge Univ. Press, Cambridge, UK.
24. Kreps, E., Verjbinskaya, N. 1930. Seasonal changes in phosphate and nitrate content and in hydrogen ion concentration in the Barents Sea. Journal Conseil 3: 330-346.
25. Kruskopf, M., Flynn, K. 2006. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status and growth rate. New Phytol. 169: 525-536.
26. Leavitt, P.R., Hodgson, D.A. 2001. Sedimentary pigments. In: Smol, J.P., Birks, H.J.B., Last, W.M., eds. Tracking environmental changes using lake sediments, Vol. 3. Kluwer, Dordrecht, pp. 295-325.
27. Lee, Z.P., Carder, K.L., Steward, R.G., Peacock, T.G., Davis, C.O., Patch, J.S. 1998. An empirical algorithm for light absorption by ocean water based on color. J. Geophys. Res. 103: 27,967-27,978.
28. Lindell, T., Pierson, D., Premazzi G., Zilioli, E. 1999. Manual for monitoring European lakes using remote sensing techniques. European Communities Report, EUR 18665 EN, 161 pp.
29. Llewellyn, C.A., Fishwick, J.R., Blackford, J.C. 2005. Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from -HPLC-CHEMTAX and carbon derived from microscopy cell counts. J. Plankton Res. 27: 103-119.
30. Lorenzen, C. 1966. A method for continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. 13: 223-227.
31. Lorenzen, C. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343-346.
32. Mantoura, R.F.C., Llewellyn, C.A. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151: 297-314.
33. Matile, P., Hortensteiner, S., Thomas, H. 1999. Chlorophyll degradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 67-95.
34. Mackinney, G. 1940. Criteria for purity of chlorophyll preparations. J. Biol. Chem. 132: 91-109.
35. Menden-Deuer, S., Lessard, E.J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. -Limnol. Oceanogr. 45: 569-579.
36. Michelutti, N., Wolfe, A.P., Briner, J.P., Miller, G.H. 2007. Climatically controlled chemical and biological development in Arctic lakes. J. Geophys. Res. 112, G03002, doi: 10.1029/2006JG000396.
37. Millie, D.F., Baker, M.C., Tucker, C.S., Vinyard, B.T., Dionigi, C.P. 1992. High-resolution airborne remote sensing of bloom-forming phytoplankton. J. Phycol. 28: 281-290.
38. Morel, A., Berthon, J.F. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 34: 1545-1562.
39. Morel, A., Prieur, L. 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22: 709-722.
40. Patterson, J., Parsons, T.R. 1963. Distribution of chlorophyll a and degradation products in various marine materials. Limnol. Oceanogr. 8: 355-356.
41. Reynolds, C.S. 2006. Ecology of phytoplankton. Cambridge Univ. Press, Cambridge, UK, 535 pp.
42. Richards, F.A., Thompson, T.G. 1952. The estimation and characterization of plankton population by pigment analysis. II. A spectrographic method for the estimation of plankton pigments. J. Mar. Res. 11: 156-172.
43. Ritchie., R.J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photsynth. Res. 89: 27-41.
44. Ritchie., R.J. 2008. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46: 115-126.
45. Rowan, K. S. 1989. Photosynthetic pigments of algae. Cambridge Univ. Press, Cambridge, UK, 334 pp.
46. Shuleikin, V.V. 1923. On the colour of the sea. Phys. Rev. 22: 86-100.
47. Simis, S.G.H., Peters, S.W.M., Gons, H.J. 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 50: 237-245.
48. Simoni, R.D., Hill, R.L., Vaughan, M., Tabor, H. 2003. A classic instrument: The Beckman DU spectrophotometer and its inventor, Arnold O. Beckman. J. Biol. Chem. 278: 79-81.
49. Stich, H.B., Brinker, A. 2005. Less is better: Uncorrected versus pheopigment-corrected photometric chlorophyll-a estimation. Arch. Hydrobiol. 162: 111-120.
50. Strong, A.E. 1974. Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake. Remote Sensing Environ. 3: 99-107.
51. Tswett, M. 1906. Adsorptionsanalyse und Chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber. Deutsch. Bot. Ges. 24: 384-393. English translation may be found at:
52. Yacobi, Y.Z., Pollingher U., Gonen-Zurgil, Y. Gerhardt, V., Sukenik, A. 1996. HPLC analysis of phytoplankton pigments from Lake Kinneret with special reference to the bloom-forming dinoflagellate Peridinium gatunense (Dinophyceae) and chlorophyll degradation products. J. Plankton Res. 18: 1781-1796.
53. Yacobi, Y.Z., Schlichter, M. 2004. GIS application for mapping of phytoplankton using a multi-channel fluorescence probe derived information. In: Chen, Y., Takara, K., Cluckie, I.D. De Smedt, F.H., eds. GIS and remote sensing in hydrology, water resources and environment, IHAS Publication 289. International Association of Hydrological Sciences Press, Wallinford, UK, pp. 301-307.
54. Yacobi, Y.Z., Zohary, T. 2010. Carbon:chlorophyll a ratio, assimilation numbers and turnover times in Lake Kinneret phytoplankton. Hydrobiologia 639: 185-196.
55. Yentsch, C.S., Menzel, D.W. 1963. A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence. Deep-Sea Res. 10: 221-231.
56. Yoder, J.A., Kennelly, M.A. 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global -Biogeo-chem. Cycles 17, doi: 10.1029/2002GB001942.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation