Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Evaluation of atmospheric correction using bi-temporal hyperspectral images

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Atmospheric correction of hyperspectral image data is frequently a requirement for using remote sensing to understand and quantify various phenomena that take place on the Earth. This is particularly true when the analysis requires the use of spectral reflectance. Although sophisticated models exist that can be used to perform atmospheric correction, evaluating the performance of these procedures is non-trivial. In this study, two atmospheric correction programs, FLAASH (based on MODTRAN 4), and TAFKAA_6S (based on 6S), were applied to a pair of images of the same area but collected six weeks apart. The results of the two atmospheric correction procedures are analyzed based on the expected stability of pseudo-invariant features (PIFs). Although both procedures performed rather well in terms of removing atmospheric absorption features in the infrared region, the analysis identified some anomalous behaviors as well, the most important of which appears to be related to the bidirectional reflectance distribution of the forest pixels selected as PIFs.

Affiliations: 1: Remote Sensing Division, Naval Research Laboratory ; 2: School of Civil and Environmental Engineering, Cornell University, Ithaca


Full text loading...


Data & Media loading...

1. Acharya, P.K., Berk, A., Anderson, G.P., Larsen, N.F., Tsay, S., Stamnes, K.H. 1999. MODTRAN4: Multiple scattering and bi-directional reflectance distribution function (BRDF) upgrades to MODTRAN. In: Allen, M.L., ed. SPIE Proceedings, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III 3756: 354-362, doi: 10.1117/12.366389
2. Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Anderson, G.P, Felde, G., Gardner, J., Hoke, M., Jeong, L.S., Pukall, B., Ratkowski, A. Burke, H.H. 1999. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. In SPIE Proceedings, Imaging Spectrometry 3753: 61-69.
3. Adler-Golden, S.M., Matthew, M.W., Berk, A., Fox, M.J., Lee, J., Ratkowski, A.J. 2008. Improvements in aerosol retrieval for atmospheric correction. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3: 130-133, doi: 10.1109/IGARSS.2008.4779300.
4. Aföldi, T.T., Munday, J.C. 1978. Water quality analysis by digital chromaticity mapping of Landsat data. Can. J. Remote Sens. 4: 108-126.
5. Berk, A., Bernstein, L.S., Robertson, D.C. 1989. MODTRAN: A moderate resolution model for LOWTRAN 7. Air Force Geophysics Laboratory Technical Report, GL-TR-89-0122, Hanscom AFB, MA.
6. Berk, A., Bernstein, L.S., Anderson, G.P., Acharya, P.K., Robertson, D.C., Chetwynd, J.H., Adler-Golden, S.M. 1998. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 65: 367-375.
7. Berk, A., Anderson, G.P., Bernstein, L.S., Acharya, P.K., Dothe, H., Matthew, M.W., et al. 1999. MODTRAN4 radiative transfer modeling for atmospheric correction. SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 3756: 348-353.
8. Berk, A., Acharya, P.K., Bernstein, L.S., Anderson, G.P., Chetwynd Jr., J.H., Hoke, M.L. 2000. Reformulation of the MODTRAN band model for higher spectral resolution. In: Shen, S.S., Descour, M.R., eds. SPIE Proceedings, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI 4049: 190-198.
9. Berk, A., Adler-Golden, S.M., Ratkowski, A.J., Felde, G.W., Anderson, G.P., Hoke, M.L., et al. 2002. Exploiting MODTRAN radiation transport for atmospheric correction: The FLAASH algorithm. Proceedings of the Fifth International Conference on Information Fusion 2: 798-803.
10. Burkholder, A., Warner, T.A., Cup, M., Landenberger, R. 2011. Seasonal trends in separability of leaf reflectance spectra for Ailanthus altissima and four other tree species. Photogramm. Eng. Remote Sensing 77: 793-804.
11. Canty, M.J. 2011. The MAD MAN: change detection and radiometric normalization with ENVI/IDL and Python. The user's manual for the iMAD and RADCAL extensions, retrieved Oct. 15, 2011, from
12. Canty, M.J., Nielsen, A.A. 2008. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing Environ. 112: 1025-1036.
13. Collins, W. 1978. Remote sensing of crop type and maturity. Photogramm. Eng. Remote Sens. 44: 43-55.
14. Coppin, P.R., Bauer, M.E. 1994. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features. IEEE Trans. Geosci. Remote Sens. 32: 918-927.
15. Eckhardt, D.W., Verdin, J.P, Lyford, G.R. 1990. Automated update of an irrigated lands GIS using Spot HRV imagery. Photogramm. Eng. Remote Sens. 56: 1515-1522.
16. Elvidge, CD., Yuan, D., Weerackoon, R.D., Lunetta, R.S. 1995. Relative radiometric normalization of Landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression. Photogramm. Eng. Remote Sensing 61: 1255-1260.
17. ENVI Reference Guide 2009. ENVI Version 4.7, Document ID: 20REF47DOC, ITT Visual Information Systems.
18. Gao, B.C., Montes, M.J., Ahmad, Z., Davis, C.O. 2000. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Optics 39: 887-896.
19. Gao, B.C., Davis, C.O., Goetz, A.F.H. 2006. A review of atmospheric correction techniques for hyperspectral remote sensing of land surfaces and ocean color. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) pp. 1979-1981, 31 July-04 Aug. 2006, doi: 10.1109/IGARSS.2006.512
20. Gao, B.C., Montes, M.J., Davos, C.O., Goetz, A.F.H. 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 113 (supplement 1): S17-S24.
21. Hadjimitsis, D.G., Clayton, C.R.I., Hope, V.S. 2004. An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Inter. J. Remote Sens. 25: 3651-3674.
22. Hill, R.A., Wilson, A.K., George, M., Hinsley, S.A. 2010. Mapping tree species in temperate deciduous woodland using time-series mult-spectral data. Appl. Vegetation Sci. 13: 86-99.
23. Key, J. 2001. Streamer user's guide. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, 96 pp.
24. Lenney, M.P., Woodcock, C.E., Collins, J.B., Hamdi, H. 1996. The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from Landsat TM. Remote Sens. Environ. 56: 8-20.
25. Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N. 2002. iew angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS. Inter. J. Remote Sensing 23: 2247-2262.
26. Matthew, M.W., Adler-Golden, S.M., Berk, A., Richtsmeier, S.C., Levine, R.Y., Bernstein, L.S., Acharya, P.K., Anderson, G.P., Felde, G.W., Hoke, M.P., Ratkowski, A., Burke, H.H., Kaiser, R.D., Miller, D.P. 2000. Status of atmospheric correction using a MODTRAN4-based algorithm". In: SPIE Proceedings, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI 4049: 199-207.
27. Matthew, M.W., Adler-Golden, S. M., Berk, A., Felde, G., Anderson, G.P., Gorodetzky, D., Paswaters, S., Shippert, M. 2002. Atmospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data. In: Proceedings of the 31st Applied Imagery Pattern Recognition Workshop, IEEE Computer Society, Washington, D.C., pp. 157-163.
28. Montes, M.J., Gao, B.C., Davis, C.O. 2001. A new algorithm for atmospheric correction of hyperspectral remote sensing data. In: Roper, W.E., ed., Geo-Spatial Image and Data Exploitation II, Proceedings of the SPIE, 4383: 23-30.
29. NASA 2009. Ozone over your house, accessed 24 Jan 2012
30. Nielsen, A.A. 2007. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing 16: 463-478.
31. Nielsen, A.A., Conradsen, K., Simpson, J.J. 1998. Multivariate Alteration Detection (MAD) and MAF post-processing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 64: 1-19.
32. NOAA, 2012. "NCDC: National Climatic Data Center (NCDC)", accessed 24 Jan 2012
33. Pearlman, S.J., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., Carman, S.L. 2003. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sensing 41: 1160-1173.
34. Philpot, W.D. 2007. Estimating atmospheric transmission and surface reflectance from a glint-contaminated spectral image. IEEE Trans. Geosci. Remote Sens. 45: 448-457.
35. Sandmeier, St., Müller, Ch., Hosgood, B., Andreoli, G. 1998. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sens. Environ. 66: 222-233.
36. Schott, J.R., Salvaggio, C., Volchok, W.J. 1988. Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 26: 1-16.
37. Shi, W., Wang, M. 2007. Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing. Remote Sens. Environ. 110: 149-161.
38. Shi, W., Wang, M. 2009. An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens. Environ. 113: 1587-1597.
39. Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., Macomber, S.A. 2001. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens. Environ. 75: 230-244.
40. Stein, D.W.J., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stacker, A.D. 2002. Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine 19: 58-69.
41. Verdin, J.P. 1985. Monitoring water quality conditions in a large western reservoir with Landsat imagery. Photogramm. Eng. Remote Sens. 51: 343-353.
42. Vermote, E.F., Tanre, D., Deuze, J. L., Herman, M., Morcrette, J.J. 1997a. Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 2, NASA — GSFC, Greenbelt, U.S.A.
43. Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcrette, J.J. 1997b. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35: 675-686.
44. Wang, M., Shi, W. 2005. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: two case studies. Geophys. Res. Lett. 32, L13606, doi: 10.1029/2005GL022917.
45. Wang, M., Shi, W. 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express 15: 15722-15733.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation