Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

We introduce a new framework for analyzing spectra called Moment Distance that uses metrics derived from the shape of the curve described by fine resolution spectra. We locate potential pivot wavelength regions (PWR) useful for estimation of chlorophyll and carotenoids, and explore the spectral separability of maize (Zea mays L.) and soybean (Glycine max (L.) Merr.) at specific PWRs. We find the Moment Distance Index (MDI) to perform as well as or better than optimized band ratio models in terms of bias and RMSE. The 720-730 nm PWR for chlorophyll and 450-500 nm PWR for carotenoids are not only sensitive to pigment concentrations, but could distinguish maize spectra from soybean spectra. The separability of the spectra appears as the absence of crossings that define the maximal spectral shape difference. The larger the difference, the more the maize MDI can be distinguished from the soybean MDI. MDI yields significantly different linear models (p < 0.05) for retrieval of chlorophyll from maize and soybean. What we present here works at the leaf level. Next, we need to investigate MDI performance at canopy, field, and landscape scales, especially with imaging spectrometer data containing both pure and mixed spectra.

Affiliations: 1: Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, Brookings

10.1560/IJPS.60.1-2.65
/content/journals/10.1560/ijps.60.1-2.65
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps.60.1-2.65
Loading

Data & Media loading...

1. Bachmann, C.M., Donato, T.F., Lamella, G.M., Rhea, W.J., Bettenhausen, M.H., Fusina, R.A., DuBois, K.R., Porter, J.H., Truitt, B.R. 2002. Automatic classification of land cover on Smith Island, VA, using HyMAP imagery. IEEE Trans. Geosci. Remote Sens. 40: 2313-2330.
2. Chen. W., Henebry, G.M. 2010. Spatio-spectral heterogeneity analysis using EO-1 Hyperion imagery. Comput. Geosci. 36: 167-170.
3. Ciganda, V., Gitelson, A.A., Schepers, J. 2009. Non-destructive determination of maize leaf and canopy chlorophyll content. J. Plant Physiol. 166: 157-167.
4. Clevers, J.G.P.W. 1988. Application of a vegetation index in correcting the infrared reflectance for soil background. Int. Arch. Photogram. Rem. Sens. 16: 221-226.
5. Efron, B., Tibshirani, R.J. 1993. An introduction to the bootstrap. Chapman & Hall/CRC, London, UK.
6. Elvidge, C.D. 1990. Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens. 11: 1775-1796.
7. Filella, I., Peñuelas, J. 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 15: 1459-1470.
8. Gamon, J.A., Field, C.B., Bilger, W., Björkman, O., Fredeen, A.L., Peñuelas, J. 1990. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85: 1-7.
9. Gamon, J.A., Serrano, L., Surfus, J.S. 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492-501.
10. Gitelson, A.A., Merzlyak, M.N. 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. 22: 247-252.
11. Gitelson, A.A., Merzlyak, M.H. Lichtenthaler. 1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148: 501-508.
12. Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N. 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. J. Photochem. Photobiol. 75: 272-281.
13. Gitelson, A.A., Gritz, U., Merzlyak, M.N. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160: 271-282.
14. Gitelson, A.A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161: 165-173.
15. Gitelson, A.A., Viña, A., Rundquist, D.C., Ciganda, V., Arkebauer, T.J. 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32: L08403 [doi: 10.1029/2005GL022688].
16. Gitelson, A.A., Keydan, G.P., Merzlyak, M.N. 2006. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves, Geophys. Res. Lett. 33: L11402, doi: 10.1029/2006GL026457.
17. Gitelson, A.A., Chivkunova, O.B., Merzlyak, M.N. 2009. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. Jour. Bot. 96: 1861-1868.
18. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O. 1998. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Rem. Sens. Environ. 65: 227-248.
19. Green, R.O., Asner, G., Ungar, S., Knox, R. 2008. NASA mission to measure global plant physiology and functional types. IEEE Aerospace Conference. DOI: 10.1109/AERO.2008.4526244.
20. Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Rem. Sens. Environ. 25: 295-309.
21. Hurcom, S.J., Harrison, A.R. 1998. The NDVI and spectral decomposition for semi-arid vegetation abundance estimation. Int. J. Remote Sens. 19: 3109-3125.
22. Kooistra, L., Salas, E.A.L., Clevers, J.G.P.W., Wehrens, R., Leuven, R.S.E.W., Nienhuis, P.H., Buydens, L.M.C. 2004. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Poll. 127: 281-290.
23. Kruse, F.A., Taranik, J.V., Coolbaugh, M., Michaels, J., Littlefield, E.F., Calvin, W.M., Martini, B.A. 2011. Effect of reduced spatial resolution on mineral mapping using imaging spectrometry—examples using Hyperspectral Infrared Imager (HyspIRI)-simulated data. Remote Sens. 3: 1584-1602.
24. Liao, L., Jarecke, P., Gleichauf, D., Hedman, T. 2000. Performance characterization of the Hyperion imaging spectrometer instrument. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers. San Diego, CA, pp. 254-263.
25. Lichtenthaler, H., Gitelson, A.A., Lang, M. 1996. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol. 148: 483-493.
26. Mishra, D.R., Narumalani, S., Rundquist, D., Lawson, M., Perk, R. 2007. Enhancing the detection and classification of coral reef and associated benthic habitats: a hyperspectral remote sensing approach. J. Geophys. Res. 112: C08014, doi: 10.1029/2006JC003892.
27. Moore, R., Clark, W., Stern, K., Vodopich, D. 1995. Botany. Wm. C. Brown, Dubuque, IA.
28. Okin, G.S. 2010. The contribution of brown vegetation to vegetation dynamics. Ecology 91: 743-755.
29. Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., Carman, S.L. 2003. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 41: 1160-1173.
30. Pearson, R.L., Miller, L.D. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grassland, Colorado. 8th International Symposium on Remote Sensing of Environment, pp. 1357-1381.
31. Qi, J., Chehebouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S. 1994. Modified Soil Adjusted Vegetation Index (MSAVI). Rem. Sens. Environ. 48: 119-126.
32. Richardson, A.J., Wiegand, C.L. 1977. Distinguishing vegetation from soil background information. Photogramm. Eng. Rem. Sens. 43: 1541-1552.
33. Rouse, J.W., Haas, R.W., Schell, J.A., Deering, D.W., Harlan, J.C. 1974. Monitoring the vernal advancement and retrogradation (greenware effect) of natural vegetation. Greenbelt, MD, USA, NASA/GSFCT, Type 3, Final Report.
34. Salas, E.A.L., Henebry, G.M. 2009. Area between peaks feature in the derivative reflectance curve as a sensitive indicator of change in chlorophyll concentration. GIScience Rem. Sens. 46: 315-328.
35. Solovchenko, A.E., Chivkunova, O.B., Gitelson, A.A., Merzlyak, M.N. 2010. Non-destructive estimation pigment content, ripening, quality and damage in apple fruit with spectral reflection in the visible range. Fresh Produce 4, Special Issue 1, pp. 91-102.
36. Steele, M.R., Gitelson, A.A., Rundquist, D.C. 2008. Non-destructive estimation of leaf chlorophyll content in grapes. Am. J. Enol. Vitic. 59: 299-305.
37. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Rem. Sens. Environ. 8: 127-150.
38. Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A., Zarco-Tejada, P. 2009. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Rem. Sens. Environ. 113: S67-S77, doi: 10.1016/j.rse.2008.10.019.
39. Viña, A., Henebry, G.M., Gitelson, A.A. 2004. Satellite monitoring of vegetation dynamics: sensitivity enhancement by the Wide Dynamic Range Vegetation Index. Geophys. Res. Lett. 31: L04503, doi:10.1029/2003GL019034.
40. Zur, Y., Gitelson, A.A., Chivkunova, O.B., Merzlyak, M.N. 2000. The spectral contribution of carotenoids to light absorption and reflectance in green leaves, In: Proceedings of the Second International on Geospatial Information in Agriculture and Forestry Conference. Vol 2. Lake Buena Vista, FL, pp. II-17-II-23.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps.60.1-2.65
Loading

Article metrics loading...

/content/journals/10.1560/ijps.60.1-2.65
2012-05-18
2018-09-26

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation