Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Review: Molecular analysis in prickly pear ripening: An overview

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

In Mexico, nopal is grown for production of prickly pear fruits takes over several thousands of hectares. This crop has been associated with the local culture since the prehispanic age, and its demand has increased in recent years due to its remarkable nutraceutical potential and its content of some key nutrients such as calcium, iron, and vitamin C, among others. The economical value of the fruit as an export product is increasing and is also becoming a very important alternative for the people who live in the production areas. However, this fruit still has undesirable characteristics such as the high number of spines and seeds in its fruits and a poor post-harvest life that limits the production and consumer acceptance. At ripening, the fruit undergoes many changes, including the development of color and aroma and improvements in flavor and texture, that make them attractive to potential consumers. Ripening is considered the main process in fruit development, and studies focused on this process have included physicochemical, biochemical and molecular analysis. With the development of genomic analysis, the strategies for studying fruit ripening have been changing and now there are new perspectives and opportunities. The objective of this review is to describe the studies related to prickly pear ripening, with emphasis in the molecular studies, including the chances for sequencing.

Affiliations: 1: Circuito Universitario, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n ; 2: INIFAP, CENGUA, Km 67 Carretera San Luís Potosí-Querétaro ; 3: Laboratorio Integral de Alimentos, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Lagos de Country ; 4: Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), CINVESTAV-IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato


Full text loading...


Data & Media loading...

1. Anaya-Pérez, M.A. 2001. History of the use of Opuntia as forage in Mexico. In: Mondragón-Jacobo, C., Pérez-González, S. (Eds.). Cactus (Opuntia spp.) as storage. FAO, Rome, Italy, pp. 5-12.
2. Aramuganathan, K., Earle, E.D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208-218.
3. Brady, C. J. 1987. Fruit ripening. Annu. Rev. Plant Physiol. 38:155-178.
4. Bravo-Hollis, H. 1978. Las cactáceas de México. Vol. 1, UNAM México, D. F.
5. Carra, A., Mica, E., Gambino, G., Pindo, M., Moser, C., Pè, M. E., Schubert, A. 2009. Cloning and characterization of small non-coding RNAs from grape. Plant J. 59: 750-63.
6. Carrillo-López, A., Cruz-Hernández, A., Carabez-Trejo, A., Guevara-Lara, F., Paredes-López, O. 2002. Hydrolytic activity and ultrastructural changes in fruit skins from two prickly pear (Opuntia sp.) varieties during storage. J. Agric. Food Chem. 50: 1681-1685.
7. Collazo-Siquéz, P., Valverde, M. E., Paredes-López, O., Guevara-Lara, F. 2003. Expression of ripening-related genes in prickly pear (Opuntia sp.) fruits. Plant Foods for Human Nutrition 58: 317-326.
8. Cruz-Hernandez, A., Paredes-Lopez, O. 2010. Enhancement of economical value of nopal and its fruits through biotechnology. Journal of the Professional Association for Cactus Development 12: 110-126.
9. Ekblom, R., Galindo, J. 2011. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107: 1-15.
10. Estrada-Luna, A.A., J.J. Martínez-Hernández, M.E. Torres-Torres, Chablé-Moreno, F. 2008. In vitro micropropagation of the ornamental prickly pear cactus Opuntia lanigera Salm-Dyck and effects of sprayed GA3 after transplantation to ex vitro conditions. Scientia Horticulturae 117: 378-385.
11. Flores-Valdez, C. 2002. Producción y comercialización de la tuna. CIESTAAM. Universidad Autónoma de Chapingo, pp. 38-39.
12. Giovannoni, J.J. 2001. Molecular regulation of fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 725-749.
13. Giovannonni, J. J. 2003. Genetic regulation of fruit development and ripening. Plant Cell 16: S170-S180.
14. Giovannoni, J. J. 2007. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 10: 283-289.
15. González, G.E., Perales, de la C.M.A., Padilla, R.J.S., Reyes, M.L., Esquivel, V.F. 2003. Control de plagas del nopal tunero en Aguascalientes. Memoria del IX Congreso Nacional y VII Congreso Internacional sobre Conocimiento y Aprovechamiento del Nopal. Zacatecas, Zac. México. p. 121.
16. Griffith, P. M. 2004. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am. J. Bot. 91: 1915-1921.
17. Guo, Q., Xiang, A.L., Yang, Q., Yang, Z.M. 2007. Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags. Chinese Science Bulletin 52: 2380-2389.
18. Han, Y., Grierson, D. 2002. Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. Plant J. 29: 509-19.
19. Itaya, A., Bundschuh, R., Archual, A.J., Joung, J.G., Fei, Z., Dai, X., Zhao, P.X., Tang, Y., Nelson, R.S., Ding, B. 2008. Small RNAs in tomato fruit and leaf development. Biochem. Biophys. Acta 1779: 99-107.
20. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.
21. Jackson, S., Rounsley, S., Purugganan, M. 2006. Comparative sequencing of plant genomes: choices to make. Plant Cell 18: 1100-1104.
22. Kole, C. 2007. Genome mapping and molecular breeding in plants. Vol. 4. Fruits and nuts. Springer-Verlag Berlin Heidelberg, Germany.
23. Llave, C., Kasschau, K.D., Rector, M., Carrington J.C. 2002. Endogeneous and silencing-associated small RNAs in plants. Plant Cell 14: 1605-1619.
24. Mallona, I., Egea-Cortines, M., Weiss, J. 2011. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol. 156: 1978-1989.
25. Mica, E., Piccolo, V., Delledonne, M., Ferrarini, A., Pezzotti, M., Casati, C., Del Fabbro, C., Valle, G., Policriti, A., Morgante, M., Pesole, G., Pè, M.E., Horner, D.S. 2009. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics. 10: 558-598.
26. Paterson A., Richardson C. 1996. Toward a cactus genome project: utilizing information from well studied model plants to map Opuntia chromosomes. Journal of the Professional Association for Cactus Development 1: 106-109.
27. Pilcher, R.L., Moxon, S., Pakseresht, N., Moulton, V., Manning, K., Seymour, G., Dalmay, T. 2007. Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226: 709-717.
28. Pimienta-Barrios, E. 1994. Prickly pear (Opuntia spp.): a valuable fruit crop for the semiarid lands of México. J. Arid Environ. 28: 1-11.
29. Rosas-Cárdenas, F. F., Valderrama-Chairez, M. L., Cruz-Hernández, A., Paredes-López, O. 2007. Prickly pear polygalacturonase gene: cDNA cloning and transcript accumulation during ethylene treatment, cold storage and wounding. Postharvest Biol. Technol. 44: 254-259.
30. Rosas-Cárdenas, F. F., Durán-Figueroa, N., Cruz-Hernández, A., Marsch-Martínez, N., de Folter, S. 2011. Simple and efficient protocol for small RNA isolation from different plant species. Plant Methods 7: 1-4.
31. Rhoades, M.W., Bartel, D.P. 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14:787-799.
32. Schulaev, V., Sargent, D., Crowhurst, R., Mockler, T., Folkerts, O., Delcher, A., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S., Burns, P., Davis, T., Slovin, J., Bassil, N., Hellens, R., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O., Jensen, R., Allan, A., Michael, T., Setubal, J., Celton, J., Rees, D., Williams, K., Holt, S., Ruiz-Rojas, J., Chatterjee, M., Liu, B., Silva, H., Meisel, L., Adato, A., Filichkin, S.A., Troggio, M., Viola, R., Ashman, T., Wang, H., Dharmawardhana, P., Elser, J., Raja, R., Priest, H., Bryant, D., Fox, S., Givan, S., Wilhelm, L., Naithani, S., Christoffels, A., Salama, D., Carter, J., Lopez. Girona, E., Zdepski, A., Wang, W., Kerstetter, R., Schwab, W., Korban, S, Davik, J., Monfor, A., Denoyes-Rothan, B., Arus, P., Mittler, R., Flinn, B., Aharoni, A., Bennetzen, J., Salzberg, S., Dickerman, A., Velasco, R., Borodovsky, M., Veilleux, R., Folta, K. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43: 109-116.
33. Segura, S., Scheinver, L., Olalde, G., Leblanc, O., Filardo, S., Muratalla, A., Gallegos, C., Flores, C. 2007. Genome sizes and ploidy levels in Mexican catus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC, Heliabavoanae Scheinvar and Robustae Britton et Rose. Genet. Resour. Crop Evol. 54: 1033-1041.
34. Seymour, G., Poole, M., Manning, K., King, G. J. 2008. Genetics and epigenetics of fruit development and ripening. Curr. Opin. Plant Biol. 11: 58-63.
35. Song, C., Fang, J., Li, X., Liu, H., Thomas, C. 2009. Identification and characterization of 27 conserved microRNAs in citrus. Planta 230: 671-85.
36. Song, C., Wang, C., Zhang, C., Korir, N. K., Yu, H., Ma, Z., Fang, J. 2010. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics 11: 431-441.
37. Sunkar, R., Zhu, J.K. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16: 2001-2019.
38. Valderrama-Chairez, M.L., Cruz-Hernandez, A., Paredes-Lopez, O. 2002. Isolation of functional rna from cactus fruit. Plant Mol. Biol. Rep. 20: 279-286.
39. Wallace, R.S., Gibson A.C. 2002. Evolution and systematics. pp 1-21. In: Nobel, P.S., ed. Cacti: biology and uses. University of California Press, Berkeley, CA.
40. Wang, C., Wang, X., Kibet, N.K., Song C., Zhang C., Li X., Han, J., Fang, J. 2011. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiol. Plant. 143: 64-81.
41. Xie, F. L., Huang, S.Q., Guo, K., Xiang, A.L., Zhu, Y.Y., Nie, L., Yang, Z.M. 2007. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett. 581: 1464-1474.
42. Xu Q., Liu Y., Zhu A., Wu X., Ye J., Yu K., Guo W., Deng X. 2010. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics 11: 246-256.
43. Zhang B. H., Pan X. P., Anderson T.A. 2006. Identification of 188 conserved maize microRNAs and their targets. FEBS Lett. 580: 3753-3762.
44. Zhang, B.H., Pan, X.P., Cannon, C.H., Cobb, G.P., Anderson, T.A. 2005. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 15: 336-360.
45. Zhang B. H., Wang Q. L., Wang K. B., Pan X. P., Liu F., Guo T. L., Cobb G.P., Anderson T. A. 2007. Identification of cotton microRNAs and their targets. Gene 397:26-37.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation