Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Genetic diversity assessment by random amplified polymorphic DNA of oaks: 3. Quercus calliprinos Webb. in Israel and Jordan

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Analysis of the genetic diversity within and differentiation among 24 spontaneous occurrences of Q. calliprimnos in Israel (22) and Jordan (2) was done by means of Random Amplified Polymorphic DNA analysis (RAPD) with 10 primers that produced 23 detectable DNA fragments (alleles).The results revealed that the overall total genetic diversity for the species (Ht) was 0.354, the overall within-population diversity (Hs) was 0.325, and the overall proportion of differences between populations (Gst) was 0.081. The Um Reichan population had the lowest and the Dir Razach population the highest within-population gene diversity. Small but significant differentiation between the main geographic regions in Israel was found.Comparisons between populations revealed that, on average, each population of the 24 that were analyzed differed significantly from 13 ± 5 populations randomly distributed in the country. Three populations, Park Goren, Tzafririm, and Dir Razach, differed significantly from most or all of the other populations analyzed, whereas the Park Ha'Sharon, Mt. Amiad, and Beit Ha'Emeq populations were similar to most of the populations.

Affiliations: 1: Department of Agronomy and Natural Resources, Agricultural Research Organization, The Volcani Center ; 2: Department of Agronomy and Natural Resources, Agricultural Research Organization, The Volcani Center ; 3: Department of Plant Production, The Mu'tah University


Full text loading...


Data & Media loading...

1. Alon, G., Kadmon, R. 1996. Effect of successional stages on the establishment of Quercus calliprinos in an East Mediterranean maquis. Isr. J. Plant Sci.44: 335-345.
2. Avishai, M. 1967. A taxonomical revision of the oaks of the Middle East. M.Sc. thesis, Hebrew Univ., Jerusalem, 134 pp. (in Hebrew, English summary).
3. Azzena, M., Carta, B., Manchinu, M., Cadau, S. 2003. First investigation about evaluation and potential of hybrids of Quercus suber and Quercus ilex.Monti-e-Boschi54: 19-23.
4. Balaguer, L., Martinez-Ferri, E., Valladares, F., Perez-Corona, M.E., Baquedano, F.J., Castillo, F.J., Manrique, E. 2001. Population divergence in the plasticity of response of Quercus coccifera to light environment. Funct. Ecol.15: 124-135.
5. Barbero, M., Loisel, R., Quezel, P. 1992. Biogeography, ecology and history of Quercus ilex ecosystems in Mediterranean region. Vegetatio 99-100: 14-19.
6. Belahbib, N., Pemonge, M.H., Ouassou, A., Sbay, H., Kremer, A., Petit, R.J. 2001. Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Molecular-Ecology10: 2003-2012
7. Bellingham, J.P., Sparrow, A.D. 2000. Resprouting as a life history strategy in woody plant communities. Oikos89: 409-416.
8. Bond, W.J., Midgley, J.J. 2003. The evolutionary ecology of sprouting in woody plants. Int. J. Plant. Sci.164: 103-114.
9. Cavalli-Sforza, L.L., Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution21: 550-570.
10. Colombo, P-M., Lorenzzoni, F-C., Grigoletto, F. 1983. Pollen grain morphology supports the taxonomical discrimination of Mediterranean oaks (Quercus, Fagaceae). Plant Syst. Evol.141: 273-284.
11. Crow, J.F., Kimura, M. 1964. The number of alleles that can be maintained in a finite population. Genetics49: 725-738
12. Dan, Y., Raz, Z. 1970. The soil association map of Israel (Scale 1: 250.000). Ministry of Agriculture, Department of Scientific publications, Bet Dagan, Israel. 147 pp. and two maps (in Hebrew, English summary).
13. Doyle, J.J., Doyle, J.H. 1990. Isolation of plant DNA from fresh tissue. Focus12: 145-151.
14. Elena-Rossello, J.A., Cabrera, E. 1996. Isoenzyme variation in natural populations of Cork oak (Q. suber L.). Silvae Genet.45: 229-235.
15. Ellstrand, N.C., Elam, D.R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst.24: 217-242.
16. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Vers. 3.5c. Department of Genetics, University of Washington, Seattle, WA. Focus12: 13-15.
17. Frumkin, A., Carmi, I., Gopher, A., Ford, D.C., Schwarcz, H.P., Tsuk, T. 1999. A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah cave, Israel. The Holocene9: 677-682.
18. Furnier, G.R., Adams, W.T. 1986. Geographic patterns of allozyme variation in Jeffery pine. Am. J. Bot.73: 1009-1015.
19. Garcia, M., Retana, J. 2004. Effect of site quality and shading on sprouting patterns of holm oak coppices. Forest Ecol. Manage.188: 39-49.
20. Gentile, S., Gastaldo, P. 1976. Quercus calliprinos Webb. and Quercus coccifera L.: researches on the leaf anatomy and taxonomical and chronological considerations. Giorn. Bot. Ital.110: 89-115.
21. Geological Survey of Israel, 1998. Ministry of National Infrastructure. Geological map of Israel1: 200,000.
22. Gitzendanner, M.A., Soltis, P.M. 2000. Patterns of genetic variation in rare and widespread plant congeners. Am. J. Bot.87: 783-792.
23. Gömöry, D., Yakovlev, I., Zhelev, P., Jedináková, J., Paule, L. 2001. Genetic differentiation of oak populations within the Quercus robur / Quercus petraea complex in Central and Eastern Europe. Heredity86: 557-563.
24. Gregorius, H-R. 1980. The probability of losing an allele when diploid genotypes are sampled. Biometrics36: 632-652.
25. Guries, R.P., Ledig, F.T. 1981. Genetic structure of populations and differentiation in forest trees. In: Conkle, M.T., ed. Proceedings of the Symposium on Isozymes of North American Forest Trees and Forest Insects. USDA Forest Serv. Gen. Tech. Rep. PSW-48, pp. 42-48.
26. Hamrick, J.L. 2004. Response trees to global environmental changes. Forest Ecol. Manage.197: 323-335
27. Hamrick, J.L., Godt, M.J.W. 1989. Allozyme diversity in plant species. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L., Weir, B.S., eds. Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA, pp. 43-63.
28. Hamrick, J.L., Godt, M.J.W., Murawski, D.A., Loveless, M.D. 1991. Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk, D.A., Holsinger, K.E., eds. Genetics and conservation of rare plants. Oxford University Press, New York, pp. 75-86.
29. Harif, I. 1974. First year development of leading species of plant communities in the Judean Hills and its role in succession. Ph.D. thesis, Hebrew Univ., Jerusalem, 88 pp. (in Hebrew, English summary).
30. Hokanson, S.C., Isebrands, J.G., Jensen, R.J., Hancock, J.F. 1993. Isozyme variation in oaks of the Apostle Islands in Wisconsin: genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am. J. Bot.80: 1349-1357.
31. Horowitz, A. 1979. The Quaternary of Israel. Academic Press, New York, 394 pp.
32. Jiménez, P., Lopez de Heredia, U., Collad, C., Lorenzo, Z., Gil, L. 2004. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Heredity93: 510-515.
33. Kadosh, D., Sivan, D., Kutiel, H., Weinstein-Evron, M. 2004. A late quaternary paleoenvironmental sequence from Dor, Carmel coastal plain, Israel. Palynology28: 143-157.
34. Korol, L., Shklar, G., Schiller, G. 2001. Site influences on the genetic variation and structure of Pinus halepensis Mill. provenances. Forest Genet.8: 295-306
35. Le Corre, V., Roussel, G., Zanetto, A., Kremer, A. 1998. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. III. Patterns of variation identified by geostatistical analyses. Heredity80: 464-473.
36. Lewontin, R.C. 1972. The apportionments of human diversity. Evol. Biol.6: 381-398.
37. Linhart, Y.B., Mitton, J.B., Sturgeon, K.B., Davis, M.L. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity46: 407-426.
38. Liphschitz, N., Biger, G. 1990. Ancient dominance of the Quercus calliprinos—Pistacia palaestina association in Mediterranean Israel. J. Veg. Sci.1: 67-70.
39. Mayes, S.G., McGinley, M.A., Werth, C.R. 1998. Clonal population structure and genetic variation in sand-shinnery oak, Quercus havardii (Fagaceae). Am. J. Bot.85: 1609-1617.
40. McDermott, J.M., McDonald, B.A. 1993. Gene flow in plant pathosystems. Annu. Rev. Phytopathol.31: 353-373
41. Michaud, H., Lumaret, R., Romane, F. 1992. Variastion in the genetic structure and reproduction biology of Holm oak populations. Vegetatio 99-100: 107-113.
42. Michaud, H., Toumi, L., Lumaret, R., Li, T.X., Romane, F., Di Giusto, F. 1995. Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism. Heredity74: 590-606
43. Montalvo, A.M., Conard, S.G., Conkle, M.T., Hodgskiss, P.D. 1997. Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae). Am. J. Bot.84: 1553-1564.
44. Mueller-Starck, G. 1995. Genetic variation under extreme environmental conditions. In: Baradat, Ph., Adams, W.T., Müller-Starck, G., eds. Population genetics and genetic conservation of forest trees. SPB Academic Publishers, Amsterdam, pp. 201-210.
45. Nave, Z. 1985. The climax of the Mediterranean maquis—Imagination or reality. In: The Mediterranean maquis and forests in Israel. ROTEM—Bulletin of the Israel Plant Information Centre18: 14-33.
46. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A.70: 3321-3323.
47. Nei, M. 1978. Molecular evolutionary genetics. Columbia University Press, New York, pp. 187-192.
48. Nei, M. 1987. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics89: 283-290.
49. Nevo, A. 1998. Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. J. Exp. Zool.282: 95-119.
50. Nevo, E., Fragman, O., Dafni, A., Beiles, A. 1999. Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at "Evolution Canyon", Lower Nahal Oren, Mount Carmel, Israel. Isr. J. Plant Sci.47: 49-59.
51. Oliveira, P., Custodio, A.C., Branco, C., Reforco, I., Rodrigues, F., Varela, M.C., Meierrose, C. 2003. Hybrids between cork oak and holm oak: isoenzyme analysis. Forest Genet.10: 283-297.
52. Oppenheimer, H.R. 1940. Etudes sur le probleme de la reconstitution des chenaies en Palestine. Palest. J. Bot., Rehovot3: 105-143.
53. Paffetti, D., Vettori, C., Giannini, R. 2001. Relict populations of Quercus calliprinos Webb. on Sardinia island identified by chloroplast DNA sequences. Forest Genet.8: 1-11.
54. Palamarev, E. 1989. Paleobotanical evidence of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst. Evol.162: 93-107.
55. Pervolotsky, A., Haimov, Y. 1992. The effect of thinning and goat browsing on the structure and development of Mediterranean woodland in Israel. Forest Ecol. Manage.49: 61-74.
56. Safriel, U.N., Volis, S., Kark, S. 1994. Core and peripheral populations and global climate change. Isr. J. Plant Sci.42: 331-345.
57. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
58. Samuel, R., Pinsker, W., Ehrendorfer, F. 1995. Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robr (Fagaceae) from eastern Austria. Bot. Acta108: 290-299.
59. Schiller, G., Shklar, G., Korol, L. 2003. Genetic diversity assessment by random amplified polymorphic DNA of oaks in Israel. 1. Tabor oak (Quercus aegilops L. ssp. ithaburensis [Decne] Boiss.). Isr. J. Plant Sci.51: 1-10.
60. Schiller, G., Shklar, G., Korol, L. 2004a. Genetic diversity assessment by random amplified polymorphic DNA of oaks in Israel. 2. Quercus boissieri Reut. Isr. J. Plant Sci.52: 315-322.
61. Schiller, G., Korol, L., Shklar, G. 2004b. Habitat effects on adaptive genetic variation in Pinus halepensis Mill. provenances. Forest Genet.11: 325-335.
62. Schneider, S., Roessli, D., Excoffier, I. 2000. ARLEQUIN, ver. 2.000: A software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
63. Schwab, M.J., Neumann, F., Litt, T., Negendank, J.F.W., Stein, M. 2004. Holocene palaeoecology of the Golan Heights (Near East: investigation of lacustrine sediments from Birkat Ram Crater Lake). Quaternary Sci. Rev.23: 1723-1731.
64. Shamir, T. 1985. Dynamics of oak maquis (Quercus calliprinos) in the Jerusalem Mountains: vegetative growth, regeneration and acorn production. ROTEM—Bulletin of the Israel Plant Information Centre18: 93-112.
65. Shannon, C.E., Weaver, W. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.
66. Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics139: 457-462.
67. Soto, A., Lorenzo, Z., Gil, L. 2003. Nuclear microsatellite markers for the identification of Quercus ilex L. and Q. suber L. hybrids. Silvae Genet.52: 63-66
68. Sternberg, M., Shoshany, M. 2001. Aboveground biomass allocation and water content relationships in Mediterranean trees and shrubs at two climatological regions in Israel. Plant Ecol.157: 171-179.
69. Toumi, L., Lumaret, R. 1998. Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography and genetic introgression by other Mediterranean oak species and human activities. Theor. Appl. Genet.97: 647-656.
70. Tsiouvaras, C. 1987. Ecology and management of Kermes oak (Quercus coccifera L.) shrubland in Greece: a review. J. Range Manage.40: 542-546.
71. Valladares, F., Balaguer, L., Martinez-Ferri, E., Perez-Corona, E., Manrique, E. 2002. Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistant with the environment unpredictability of Mediterranean ecosystems. New Phytol.156: 457-467.
72. Waisel, Y., Friedman, J. 1960. Germination and seedling survival of Quercus calliprinos Webb. La-Yaaran 3-4: 10-13 (in Hebrew).
73. Weinstein, A. 1984. Acorn production and seedling crop in Quercus calliprinos Webb. La-Yaaran34: 1-3 (in Hebrew).
74. Yeh, F.C., Yang, R-C., Boyle, T.B.J., Ye, Z-H., Mao, J.X. 1997. POPGEN Ver. 1.32. The user-friendly software for population genetic analysis. Molecular Biology and Bio-technology Center, University of Alberta, Canada.
75. Zanetto, A., Kremer, A. 1995. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation. Heredity75: 506-517.
76. Zohary, M. 1960. The maquis of Quercus calliprinos in Israel and Jordan. Bull. Res. Counc. Isr.9D: 51-72.
77. Zohary, M. 1961. On the oak species of the Middle East. Bull. Res. Counc. Isr.9D: 161-186.
78. Zohary, M. 1962. Plant life of Palestine, Israel and Jordan. Ronald Press, New York, 262 pp.
79. Zohary, M. 1966. Flora Palaestina. The Israel Academy of Sciences and Humanities, Jerusalem.
80. Zohary, M. 1973. Geobotanical foundation of the Middle East. Gustav Fischer Verlag, Stuttgart, 738 pp.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation