Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

High pigment tomato mutants—more than just lycopene (a review)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Fruit constitutes a major component of our diet, providing fiber, vitamins, minerals, and many phytonutrients that promote good health. Fleshy fruits such as tomatoes already contain high levels of several of these ingredients. Nevertheless, efforts have been invested in increasing and diversifying the content of phytonutrients, such as carotenoids and flavonoids, in tomato fruits. These efforts rely on transgenic approaches, and the use of single-point mutations and/or quantitative trait loci affecting levels of these phytonutrients. The tomato high pigment (hp) mutations are a good example of the latter alternative. Due to their impact on fruit lycopene content, hp mutations were already introgressed into elite tomato germplasm. Interestingly, plants carrying these mutations are also characterized by higher levels of other health-promoting metabolites, such as flavonoids and vitamins. These mutations were initially marked as lesions in structural genes of the carotenoid biosynthetic pathway. However, recent studies have shown that they represent mutations in two regulatory genes active in light signal transduction, also known as photomorphogenesis. This gene-identification has created a conceptual link between photomorphogenesis and biosynthesis of fruit phytonutrients, and suggests that manipulation of the light signal transduction machinery in plants may be an effective approach towards practical manipulation of fruit phytonutrients.

Affiliations: 1: Department of Plant Genetics and Breeding, Institute of Plant Sciences, The Volcani Center ; 2: Plant Research International ; 3: Laboratory for Plant Physiology, Wageningen University ; 4: Centre for BioSystems Genomics

10.1560/IJPS_54_3_179
/content/journals/10.1560/ijps_54_3_179
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps_54_3_179
Loading

Data & Media loading...

1. Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., Potrykus, I. 2002. Golden Rice: introducing the betacarotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr.132: 506S-510S.
2. Bino, R.J., de Vos, C.H.R., Lieberman, M., Hall, R.D., Bovy, A., Jonker, H.H., Tikunov, Y., Lommen, A., Moco, S., Levin, I. 2005. The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist166: 427-438.
3. Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C., van Tunen, A. 2002. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell14: 2509-2526.
4. Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J.9: 1551-1558.
5. Chew, B.P., Park, J.S. 2004. Carotenoid action on the immune response. J. Nutr.134: 257S-261S.
6. Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet.9: 167-172.
7. Connolly, J.D., Hill, R.A. 1992. Dictionary of terpenoids. Chapman and Hall, New York.
8. Davies, J.N., Hobson, G.E. 1981. The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Crit. Rev. Food. Sci. Nutr.15: 205-280.
9. Davuluri, G.R., van Tuinen, A., Mustilli, A.C., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Pennings, H.M., Bowler, C. 2004. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J.40: 344-354.
10. Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M., Bowler, C. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol.23: 825-826.
11. Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., Giuliano, G. 2002. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett.519: 30-34.
12. Dooner, H.K., Robbins, T.P., Jorgensen, R.A. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet.25: 173-199.
13. Duarte, J., Perez-Palencia, R., Vargas, F., Ocete, M.A., Perez-Vizcaino, F., Zarzuelo, A., Tamargo, J. 2001. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol.133: 117-124.
14. Enfissi, E.M.A., Fraser, P.D., Lois, L-M., Boronat, A., Schuch, W., Bramley, P.M. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphateforming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J.3: 17-27.
15. Fraser, P.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res.43: 228-265.
16. Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, J.W., Misawa, N., Drake, R.G., Schuch, W., Bramley, P.M. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA 99: 1092-1097.
17. Fray, R.G., Wallace, A., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., Grierson, D. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J.8: 693-701.
18. Fuhrman, B., Volkova, N., Rosenblat, M., Aviram, M. 2000. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid. Redox Signal.2: 491-506.
19. Galili, G., Galili, S., Lewinsohn, E., Tadmor, Y. 2002. Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. Crit. Rev. Plant Sci.21(3): 167-204.
20. Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M., Giuliano, G. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol.137: 199-208.
21. Harborne, J.B. 1986. Nature, distribution and function of plant flavonoids. Prog. Clin. Biol. Res.213: 15-24.
22. Johnson, E.J. 2002. The role of carotenoids in human health. Nutr. Clin. Care5: 56-65.
23. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M. 1999. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem.63: 896-899.
24. Kerckhoffs, L.H.J., Kendrick, RE. 1997. Photocontrol of anthocyanin biosynthesis in tomato. J. Plant Res.110: 141-149.
25. Key, T.J., Schatzkin, A., Willett, W.C., Allen, N.E., Spencer, E.A., Travis, R.C. 2004. Diet, nutrition and the prevention of cancer. Public Health Nutr.7: 187-200.
26. Khachik, F., Carvalho, L., Bernstein, P.S., Muir, G.J., Zhao, D.Y., Katz, N.B. 2002. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. (Maywood) 227: 845-851.
27. Konsler, T.R. 1973. Three mutants appearing in ‘Manapal’ tomato. Hortic. Sci.8: 331-333.
28. Kramer, C.Y. 1956. Extension of multiple range tests to group means with unequal number of replications. Biometrics12: 309-310.
29. Levin, I., Frankel, P., Gilboa, N., Tanny, S., Lalazar, A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet.106: 454-460.
30. Levin, I., Lalazar, A., Bar, M., Schaffer, A.A. 2004. Non-GMO fruit factories: strategies for modulating metabolic pathways in the tomato fruit. Ind. Crops Products20: 29-36.
31. Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet.108: 1574-1581.
32. Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. USA 101: 9897-9902.
33. Mayne, S.T. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J.10: 690-701.
34. Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol.20: 613-618.
35. Mochizuki, T., Kamimura, S. 1984. Inheritance of vitamin C content and its relation to other characters in crossess between hp and og varieties of tomatoes. In: Synopsis of the 9th meeting of the Eucarpia Tomato Working Group, Wageningen, the Netherlands, 22-24 May 1984, pp. 8-13.
36. Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, A., Ric de Vos, C.H., van Tunen, A.J., Verhoeyen, M.E. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol.19: 470-474.
37. Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F., Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1.Plant Cell11: 145-157.
38. Ninu, L., Ahmad, M., Miarelli, C., Cashmore, A.R., Giuliano, G. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J.18: 551-556.
39. Ogata, S., Miyake, Y., Yamamoto, K., Okumura, K., Taguchi, H. 2000. Apoptosis induced by the flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites in HL-60 cells. Biosci. Biotechnol. Biochem.64: 1075-1078.
40. Olthof, M.R., Hollman, P.C., Vree, T.B., Katan, M.B. 2000. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans. J. Nutr.130: 1200-1203.
41. Parr, A.J., Bolwell, G.P. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric.80: 985-1012.
42. Peters, J.L., van Tuinen, A., Adamse, P., Kendrick, R.E., Koornneef, M. 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol.134: 661-666.
43. Rao, A.V. 2002. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp. Biol. Med. (Maywood) 227: 908-913.
44. Rao, A.V., Agarwal, S. 1998. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr. Cancer31: 199-203.
45. Rao, A.V., Balachandran, B. 2002. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci.5: 291-309.
46. Reynard, G.B. 1956. Origin of Webb Special (Black Queen) in tomato. Rep. Tomato Genet. Coop.40: 44-64.
47. Riboli, E., Norat, T. 2003. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr.78: 559S-569S.
48. Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., Bramley, P.M. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol.18: 666-669.
49. Ronen, G., Carmel-Goren, L., Zamir, D., Hirschberg, J. 2000. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA 97: 11102-11107.
50. Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., Giuliano, G. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J.24: 413-419.
51. Schijlen, E.G., de Vos, R.C.H, van Tunen, A.J., Bovy, A.G. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry65: 2631-2648.
52. Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R., Chory, J. 2002. Deetiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr. Biol.12: 1462-1472.
53. Sies, H., Stahl, W. 2003. Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int. J. Vitam. Nutr. Res.73: 95-100.
54. Soressi, G.P. 1975. New spontaneous or chemically-induced fruit ripening tomato mutants. Rep. Tomato Genet. Coop.25: 21-22.
55. Srinath Reddy, K., Katan, M.B. 2004. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr.7: 167-186.
56. Stevens, M.A., Rick, C.M. 1986. Genetics and breeding. In: Atherton, J.G., Rudich, J., eds. The tomato crop. Chapman and Hall, New York, pp. 87-90.
57. Stewart, A.J., Bozonnet, S., Mullen, W., Jenkins, G.I., Lean, M.E., Crozier, A. 2000. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem.48: 2663-2669.
58. van Tuinen, A., Cordonnier-Prat, M-M., Pratt, L.H., Verkerk, R., Zabel, P., Koornneef, M. 1997. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor. Appl. Genet.94: 115-122.
59. Verhoeyen, M.E., Bovy, A., Collins, G., Muir, S., Robinson, S., de Vos, C.H., Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot.53: 2099-2106.
60. Wann, E.V. 1997. Tomato germplasm lines T4065, T4099, T5019, and T5020 with unique genotypes that enhance fruit quality. Hortic. Sci.32: 747-748.
61. Wann, E.V., Jourdain, E.L., Pressey, R., Lyon, B.G. 1985. Effect of mutant genotypes hp ogc and dg ogc on tomato fruit quality. J. Am. Soc. Hortic. Sci.110: 212-215.
62. Willcox, J.K., Catignani, G.L., Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr.43: 1-18.
63. Willits, M.G., Kramer, C.M., Prata, R.T., De Luca, V., Potter, B.G., Steffens, J.C., Graser, G. 2005. Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J. Agric. Food Chem.53: 1231-1236.
64. Wu, K., Erdman, J.W., Jr., Schwartz, S.J., Platz, E.A., Leitzmann, M., Clinton, S.K., DeGroff, V., Willett, W.C., Giovannucci, E. 2004. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol. Biomarkers Prev.13: 260-269.
65. Yen, H.C., Shelton, B.A., Howard, L.R., Vrebalov, S.L.J., Giovanonni, J.J. 1997. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet.95: 1069-1079.
66. Zava, D.T., Duwe, G. 1997. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr. Cancer27: 31-40.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps_54_3_179
Loading

Article metrics loading...

/content/journals/10.1560/ijps_54_3_179
2006-05-13
2018-06-21

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation