Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Genetic variability for valuable fruit quality traits in Cucumis melo

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Melon (Cucumis melo L.) is highly polymorphic for fruit traits, providing seemingly endless possibilities for genetic improvement through introgression and recombination. By expanding our knowledge of genetic variation for various fruit-quality components and relationships among them, we have attempted to create novel combinations of desirable fruit characteristics. Our goal is to present a brief review of our activities and efforts to identify melon germplasm that is outstanding for one or more fruit-quality components, and we will discuss examples of new combinations and relationships. Fruit quality is determined primarily by taste and a major component of taste is content of sugar, particularly sucrose. Unlike most fruits eaten fresh, commercially available melons lack acidity. Using exotic melon germplasm, we have introgressed acidity into sweet melon, creating a new melon flavor, sweet-sour. Another component of fruit quality is nutritive value, particularly carotenoids and ascorbic acid (vitamin C). We surveyed approximately 350 melon accessions for fruit-quality components and identified several accessions that had consistently high sucrose content as well as high carotenoid and ascorbic acid contents. Aroma is yet another component of fruit quality and we have investigated the volatiles that affect the unique aromas of different melon cultivars, as well as some of the biochemical and molecular events that lead to their formation. Genomic resources have been developed, including a number of cDNA libraries representing the great polymorphism of the species, a collection of fruit-specific EST databases, and genetic maps.

Affiliations: 1: Department of Vegetable Crops and Plant Genetics, Institute of Field and Garden Crops, Agricultural Research Organization, Newe Ya'ar Research Center ; 2: Department of Vegetable Crops and Plant Genetics, Institute of Field and Garden Crops, Agricultural Research Organization, Newe Ya'ar Research Center ; 3: Department of Vegetable Crops and Plant Genetics, Institute of Field and Garden Crops, Agricultural Research Organization, The Volcani Center


Full text loading...


Data & Media loading...

1. Abeles, F.B., Morgan, P.W., Saltveit, M.E.J. 1992. Ethylene in plant biology. Academic Press, San Diego.
2. Aggelis, A., John, I., Grierson, D. 1997. Analysis of physiological and molecula changes in melon (cucumis melo L.) varieties with different rates of ripening. J. Exp. Bot.48: 769-778.
3. Aharoni, A., Keizer, L.C.P., Bouwmeester, H.J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., Van Hou-welingen, A.M.M.L., De Vos, R.C.H., Van der Voet, H., Jansen, R.C., Guis, M., Mol, J., Davis, R.W., Schena, M., Van Tunen, A.J., O'Connel, A.P. 2000. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell12: 647-661.
4. Ayub, R., Guis, M., Ben Amor, M., Gillot, L., Roustan, J.P., Latche, A., Bouzayen, M., Pech, J.C. 1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat. Biotechnol.14: 862-866.
5. Benyamini, Y. 2005. Alcohol acetyl transferases and sesquiterpene synthases as biotechnology tools to improve melon aroma. M.Sc. thesis, Technion-Israel Institute of Technology, Haifa, 53 pp.
6. Burger, Y. 2000. Genetic and biochemical characterization of sucrose accumulation and metabolism in Cucumis melo fruit. Ph.D. thesis, Hebrew Univ., Jerusalem, 110 pp.
7. Burger, Y., Shen, S., Petreikov, M., Schaffer, A.A. 2000. The contribution of sucrose to total sugar content in melons. In: Katzir, N., Paris, H.S., eds. Proceedings of Cucurbitaceae 2000, 7th Eucarpia Meeting on Cucurbit Genetics and Breeding. Acta Hort.510: 479-485.
8. Burger, Y., Sa'ar, U., Katzir, N., Paris, H.S., Yeselson, Y., Levin, I., Schaffer, A.A. 2002. A single recessive gene for sucrose accumulation in Cucumis melo fruit. J. Am. Soc. Hort. Sci.127: 938-943.
9. Burger, Y., Sa'ar, U., Distelfeld, A., Katzir, N., Yeselson, Y., Shen, S., Schaffer, A.A. 2003. Developing of sweet melon (Cucumis melo) genotypes combinig high sucrose and organic acid content. J. Am. Soc. Hort. Sci.128: 537-540.
10. Chen, J.P., Tai, C.Y., Chen, B.H. 2004. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.) J. Chromatogr.1054: 261-268.
11. Ecker, J.R. 1995. The ethylene signal transudation pathway in plants. Science268: 667-675.
12. Feliks, J. 1967. Kil'e zera'im weharkava: massekhet kil'ayim [Seed crosses and grafting: tractate on crossing]. Devir, Tel Aviv (in Hebrew).
13. Guis, M., Botondi, R., Ben Amor, M., Ayub, R., Bouzayen, M., Pech, J.C., Latche, A. 1997. Ripening-associated biochemical traits of cantaloupe Charantaise melons expressing an antisense ACC oxidase transgenes. J. Am. Hort. Sci.122: 748-751.
14. Hadfield, K.A., Rose, J.K.C., Bennet, A.B. 1995. The respiratory climacteric is present in Charantais (Cucumis melo cv. Reticulatus F1 Alpha) melons ripened on or off the plant. J. Exp. Bot.293: 1923-1925.
15. Hadfield, K.A., Dang, T., Guis, M., Pech, J.C., Bouzayen, M., Bennet, A.B. 2000. Characterization of ripening-regulated cDNAs and their expression in ethylene-suppressed charentais melon fruit. Plant Physiol.122: 977-983.
16. Horvath, D.E., Schaffer, R., Wisman, E. 2003. Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J.51: 503-508.
17. Hubbard, N.L., Huber, S.C., Pharr, D.M. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol.91: 1527-1534.
18. Hughes, D.L., Yamaguchi, M. 1983. Identification and distrubution of some carbohydrates of the muskmelon plant. HortScience18: 739-740.
19. Ibdah, M., Azulay, Y., Portnoy, V., Wasserman, B., Bar, E., Meir, A., Burger, Y., Hirschberg, J., Schaffer, A.A., Katzir, N., Tadmor, Y., Lewinsohn, E. 2006. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry67: 1579-1589.
20. Jeffrey, C. 2001. Cucurbitaceae. In: Hanelt, P. and Inst. Plant Genet. and Crop Plant Res., eds. Mansfeld's encyclopedia of agricultural and horticultural crops. Springer, Berlin, pp. 1510-1557.
21. Kubicki, B. 1962. Inheritance of some characters in muskmelons (Cucumis melo L.). Genet. Pol.3: 265-274.
22. Lasserre, E., Bouquin, T., Hernandez, J.A., Bull, J., Pech, J.C., Balague, C. 1996. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol. Gen. Genet.251: 81-90.
23. Leach, D.N., Sarafis, V., Spooner-Hart, R., Wyllie, S.G. 1989. Chemical and biological parameters of some cultivars of Cucumis melo. Acta Hort.247: 353-357.
24. Lester, G. 1997. Melon (Cucumis melo L.) fruit nutritional quality and health functionality. HortTechnology7: 222-227.
25. Lester, G.E., Dunlap, J.R. 1985. Physiological changes during development and ripening of ‘Perlita’ muskmelon fruits. Sci. Hort.26: 323-331.
26. Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., Tadmor, Y. 2005a. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J. Agric. Food Chem.53: 3142-3148.
27. Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D., Tadmor, Y. 2005b. Not just color—carotenoid degradation as a link between color and aroma in tomato and watermelon fruit. Trends Food Sci. Technol.16: 407-415.
28. Lindner, K., Hapka, S., Kramer, M., Szoke, K. 1963. Diatetische bewertung verschiedener in ungran angebauter-zucker und wassermelonensorten. Qual. Plant. Mater. Veg.9: 203-216.
29. Mallick, M.F.R., Masui, M. 1986. Origin, distribution and taxonomy of melons. Sci. Hortic.28: 251-261.
30. McCollum, T.G., Huber, D.J., Cantliffe, D.J. 1988. Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development. J. Am. Soc. Hortic. Sci.113: 399-403.
31. Mercadante, A.Z., Rodriguez-Amaya, D.B. 1998. Effects of ripening, cultivar differences, and processing on the carotenoid composition of mango. J. Agric. Food Chem.46: 128-130.
32. Mohamed, E.T.I., Yousif, M.T. 2004. Indigenous melons (Cucumis melo L.) in Sudan: a review of their genetic resources and prospects for use as sources of disease and insect resistance. Plant Genet. Resour. Newsl.138: 36-42.
33. Monforte, A.J., Garcia-Mas, J., Arús, P. 2003. Genetic variability in melon based on microsatellite variation. Plant Breeding122: 153-157.
34. Moore, S., Payton, P., Wright, M., Tanksley, S., Giovannoni, J. 2005. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J. Exp. Bot.56: 2885-2895.
35. Moser, O., Kanellis, A.K. 1994. Ascorbate oxidase of Cucumis melo L. var. reticulatus: purification, characterization and antibody production. J. Exp. Bot.45: 275, 717-724.
36. Munger, H.M., Robinson, R.W. 1991. Nomenclature of Cucumis melo L. Cucurbit Genet. Coop. Rep.14: 43-44.
37. Mutton, L.L., Cullis, B.R., Blakeney, A.B. 1981. The objective definition of eating quality in rockmelon (Cucumis melo). J. Sci. Food Agric.32: 385-391.
38. Naudin, C. 1859. Essais d'une monographie des espèces et des variétés du genre Cucumis. Ann. Sci. Nat. Bot.4, 11: 5-87.
39. Paris, H.S. 1989. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ. Bot.43: 423-443.
40. Paris, H.S. 1994. Genetic analysis and breeding of pumpkins and squash for high carotene content. In: Linskens, H.-F., Jackson, J.F., eds. Modern methods of plant analysis. Vol. 16. Vegetables and vegetable products. pp. 93-115.
41. Padula, M., Rodriguez-Amaya, D.B. 1986. Characterisation of the carotenoids and assessment of the vitamin A value of Brasilian guavas (Psidium guajava L.). Food Chem.20: 11-19.
42. Périn, C., Gomez-Jimenez, M.C., Hagen, L., Dogimont, C., Pech, J.C., Latche, A., Pitrat, M., Lelievre, J.M. 2002. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol.129: 300-309.
43. Perkins-Veazie, P., Collins, J.K., Pair, S.D., Roberts, W. 2001. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric.81: 1-5.
44. Pitrat, M. 1998. Gene list for melon. Cucurbit Genet. Coop. Rep.21: 69-81.
45. Pitrat, M., Hanelt, P., Hammer, K. 2000. Some comments on infraspecific classification on cultivars of melon. In: Katzir, N., Paris, H.S., eds. Proceedings of Cucurbitaceae 2000, 7th Eucarpia Meeting on Cucurbit Genetics and Breeding. Acta Hort.510: 29-36.
46. Pratt, H.K. 1971. Melons. In: Hulme, A.C., ed. The biochemistry of fruit and their products. Vol. 2. Academic Press, New York, pp. 207-232.
47. Pratt, H.K., Goeschl, J.D., Martin, F.W. 1977. Fruit growth and development, ripening, and the role of ethylene in the ‘Honey Dew’ muskmelon. J. Am. Soc. Hort. Sci.102: 203-210.
48. Robinson, R.W., Decker-Walters, D.S. 1997. Cucurbits. CAB International, Wallingford Oxon, UK.
49. Rosa, J.T. 1928. Change in composition during ripening and storage of melons. Hilgardia3: 421-443.
50. Sato-Nara, K., Yuhashi, K.I., Higashi, K., Hosoya, K., Kubota, M., Ezura, H. 1999. Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol.120: 321-9.
51. Schaffer, A.A., Aloni, B., Fogelman, E. 1987. Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry26: 1883-1887.
52. Schaffer, A.A., Pharr, D.M., Madore, M.A. 1996. Cucurbits. In: Zamski, E., Schaffer, A.A., eds. Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp. 729-757.
53. Selman, J.D. 1983. The vitamin C content of some kiwifruits (Actinida chinensis Planch., variety Hayward). Food Chem.11: 63-75.
54. Seymour, G.B., McGlasson, W.B. 1993. Melons. In: Seymour, G.B., Taylor, J.E., Tucker, G.A. eds. Biochemistry of fruit ripening. Chapman and Hall, London.
55. Shalit, M., Katzir, N., Larkov, O., Burger, Y., Shalekhet, F., Lastochkin, E., Ravid, U., Amar, O., Edelstein, M., Lewinsohn, E. 2000. Aroma formation in muskmelons. Volatile acetates in ripening fruits. In: Katzir, N., Paris, H.S., eds. Proceedings of Cucurbitaceae 2000, 7th Eucarpia Meeting on Cucurbit Genetics and Breeding. Acta Hortic.510: 455-461.
56. Shalit, M., Katzir, N., Tadmor, Y., Larkov, O., Burger, Y., Shalechet, F., Lastochkin, E., Ravid, U., Amar, O., Edelstein, M., Karchi, Z., Lewinsohn, E. 2001. Acetyl CoA: alcohol acetyl transferase activity and aroma formation in ripening melon fruits. J. Agric. Food Chem.49: 794-799.
57. Shiomi, S., Yamamoto, M., Nakamura, R., Inaba, A. 1999. Expression of ACC synthase and ACC oxidase genes in melons harvested at different stage of maturity. J. Jpn. Soc. Hortic. Sci.68: 10-17.
58. Silva, F.G. da, Iandolino, A., Al-Kayal, F., Bohlmann, M.C., Cushmann, M.A., Lim, H., Ergul, A., Figueroa, R., Kabuloglu, E.K., Osborne, C., Rowe, J., Tattersall, E., Leslie, A., Xu, J., Baek, J.M., Cramer, G.R., Cushmann, J.C., Cook, D.R. 2005. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol.139: 574-597.
59. Stepansky, A., Kovalski, I., Schaffer, A.A., Perl-Treves, R. 1999a. Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol.217: 313-332.
60. Stepansky, A., Kovalski, I., Schaffer, A.A., Perl-Treves, R. 1999b. Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet. Resour. Crop Evol.45: 53-62.
61. Swamy, K.R.M., Dutta, O.P. 1985. Inheritance of ascorbic acid content in muskmelon (Cucumis melo L.). Sabrao J.17: 157-163.
62. Sweeney, J.P., Chapman, V.J., Hepner, P.A. 1970. Sugar, acids and flavor in fresh fruits. J. Am. Diet. Assoc.57: 432-435.
63. Ulrich, R. 1970. Organic acids. In: Hulme, A.C., ed. The biochemistry of fruit and their products. Vol. 1. Academic Press, New York, pp. 89-118.
64. Wang, Y., Wyllie, S.G., Leach, D.N. 1996. Chemical changes during the development and ripening of the fruit of Cucumis melo (cv. Makdimon). J. Agric. Food Chem.44: 210-216.
65. Welles, G.W.H., Buitelaar, K. 1988. Factors affecting soluble solids content in melon. Neth. J. Agric. Sci.36: 239-246.
66. Wells, J.A., Nugent, P.E. 1980. Effect of high soil moisture on quality of muskmelon. HortScience15: 258-259.
67. Whitaker, T.W., Davis, G.N. 1962. Cucurbits, botany, cultivation and utilization. Leonard Hill Ltd., London and Interscience, New York.
68. Yamaguchi, M., Hughes, D.L., Yabumoto, K., Jennings, W.G. 1977. Quality of cantaloupe muskmelons: variability and attributes. Sci. Hortic.6: 59-70.
69. Yamamoto, M., Miki, T., Ishiki, Y., Fujinami, K., Yanagisawa, Y., Nakagawa, H., Ogura, N., Hirabayashi, T., Sato, T. 1995. The synthesis of ethylene in melon fruit during the early stage of ripening. Plant Cell Physiol.35: 591-596.
70. Yariv, Y., Portnoy, V., Burger, Y., Benyamini, Y., Lewinsohn, E., Tadmor, Y., Ravid, U., White, R., Giovannoni, J., Schaffer, A.A., Katzir, N. 2004. Isolation and characterization of fruit-related genes in melons (Cucumis melo) using SSH and macroarray techniques. In: Lebeda, A., Paris, H.S., eds. Proceedings of Cucurbitaceae 2004, 8th Eucarpia Meeting on Cucurbit Genetics and Breeding. Palacky University, Olomouc, Czech Republic, pp. 491-497.
71. Zheng, X.Y., Wolf, D.W. 2000. Ethylene production, shelf life and evidence of RFLP polymorphisms linked to ethylene genes in melon (Cucumis melo L.). Theor. Appl. Genet.101: 613-624.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation