Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Bast fiber of flax (Linum usitatissimum L.): Biological foundations of its ancient and modern uses

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Flax has attracted human attention since at least the New Stone Age (the Neolithic), as one of a few crops from which highly valued products can be extracted from both seeds and straw. In addition to its continued production for linen textiles, flax fiber is finding new uses in industrial materials, which, along with reported health benefits of flax seed consumption, have created new interest in the biology of bast fiber development in this species. Bast fibers are long and scientifically intriguing cells that undergo intrusive growth and a special process of secondary cell wall assembly. Biochemical and genetic studies are revealing new information about the development of bast fibers, and providing a foundation for further manipulation of these unusual cells through biotechnology.

Affiliations: 1: Department of Biological Sciences, University of Alberta

10.1560/IJPS_54_4_273
/content/journals/10.1560/ijps_54_4_273
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1560/ijps_54_4_273
Loading

Data & Media loading...

1. Abbadi, A., Domergue, F., Bauer, J., Napier, J.A., Welti, R., Zahringer, U., Cirpus, P., Heinz, E. 2004. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16: 2734-2748.
2. Ageeva, M.V., Petrovska, B., Kieft, H., Sal'nikov, V.V., Snegireva, A.V., van Dam, J.E.G., van Veenendaal, W.L.H., Emons, A.M.C., Gorshkova, T.A., van Lammeren, A.A.M. 2005. Intrusive growth of flax phloem fibers is of intercalary type. Planta 222: 565-574.
3. Aloni, R. 1987. Differentiation of vascular tissues. Annu. Rev. Plant Physiol. 38: 179-204.
4. Arbelaiz, A., Cantero, G., Fernandez, B., Mondragon, I., Ganan, P., Kenny, J.M. 2005. Flax fiber surface modifications: effects on fiber physico mechanical and flax/polypropylene interface properties. Polym. Compos. 26: 324-332.
5. Barber, E.J.W. 1991. Prehistoric textiles. Princeton University Press, Princeton, NJ.
6. Batra, S. 1983. Other long vegetable fibers. In: Lewin, M., Pearce, E.M., eds. Handbook of fiber science and technology. Vol. IV. Marcel Dekker, New York, pp. 727-808.
7. Bedouet, L., Denys, E., Courtois, B., Courtois, J. 2006. Changes in esterified pectins during development in the flax stems and leaves. Carbohyd. Polym. 65: 165-173.
8. Bennett, M.D., Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B. 274: 227-274.
9. Carpita, N.C., McCann, M. 2000. The cell wall. In: Buchanan, B., Gruissem, W., Jones, R.L., eds. Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp. 52-108.
10. Chute, W. 2004. Report to Alberta Agriculture Research Institute, Edmonton.
11. Cooke, J.E.K., Morse, A.M., Davis, J.M. 2004. Forestry. In: Christou, P., Klee, H., eds. Handbook of plant biotechnology. Vol. 2. Wiley, Chichester, UK, pp. 881-904.
12. Day, A., Ruel, K., Neutelings, G., Cronier, D., David, H., Hawkins, S., Chabbert, B. 2005a. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222: 234-245.
13. Day, A., Addi, M., Kim, W., David, H., Bert, F., Mesnage, P., Rolando, C., Chabbert, B., Neutelings, G., Hawkins, S. 2005b. ESTs from the fibre-bearing stem tissues of flax (Linum usitatissimum L.): expression analyses of sequences related to cell wall development. Plant Biol. 7: 23-32.
14. del Río, J.C., Gutiérrez, A., Martínez, A.T. 2004. Identifying acetylated lignin units in non-wood fibers using pyrolysisgas chromatography/mass spectrometry. Rapid Commun. Mass Spectrosc. 18: 1181-1185.
15. Diederichsen, A., Richards, K. 2003. Cultivated flax and the genus Linum L. In: Muir, A.D., Westcott, N.D., eds. Flax: the genus Linum. Taylor & Francis, New York, pp. 22-54.
16. Ebskamp, M.J.M. 2002. Engineering flax and hemp for an alternative to cotton. Trends Biotechnol. 20: 229-230.
17. Eichhorn, S.J., Young, R.J. 2001. The Young's modulus of a microcrystalline cellulose. Cellulose 8: 197-207.
18. Ekblad, C., Pettersson, B., Zhang, J., Jernberg, S., Henriksson, G. 2005. Enzymatic-mechanical pulping of bast fibers from flax and hemp. Cell. Chem. Technol. 39: 95-103.
19. Esau, K. 1943. Vascular differentiation in the vegetative shoot of Linum III.—The origin of the bast fibers. Am. J. Bot. 30: 579-586.
20. Esau, K. 1969. The phloem. Gebrüder Borntraeger, Berlin.
21. Esau, K. 1977. Anatomy of seed plants. Wiley, New York.
22. Fahn, A. 1982. Plant anatomy. 3rd ed. Oxford Univ. Press, Oxford.
23. FAO. 2006. FAO Statistical Yearbook Food and Agriculture Organization of the United Nations, Rome.
24. Franck, R.R. 2005. Overview. In: Franck, R.R., ed. Bast and other plant fibres. CRC Press, New York, pp. 1-23.
25. Gassan, J., Bledzki, A.K. 2001. Thermal degradation of flax and jute fibers. J. Appl. Polym. Sci. 82: 1417-1422.
26. Gassan, J., Chate, A., Bledzki, A.K. 2001. Calculation of elastic properties of natural fibers. J. Mater. Sci. 36: 3715-3720.
27. Gorshkova, T., Morvan, C. 2006. Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223: 149-158.
28. Gorshkova, T.A., Wyatt, S.E., Salnikov, V.V., Gibeaut, D.M., Ibragimov, M.R., Lozovaya, V.V., Carpita, N.C. 1996. Cell-wall polysaccharides of developing flax plants. Plant Physiol. 110: 721-729.
29. Gorshkova, T.A., Salnikov, V.V., Pogodina, N.M., Chemikosova, S.B., Yablokova, E.V., Ulanov, A.V., Ageeva, M.V., Van Dam, J.E.G., Lozovaya, V.V. 2000. Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann. Bot. 85: 477-486.
30. Gorshkova, T.A., Sal'nikova, V.V., Chemikosova, S.B., Ageeva, M.V., Pavlencheva, N.V., van Dam, J.E.G. 2003. The snap point: a transition point in Linum usitatissimum bast fiber development. Ind. Crop. Prod. 18: 213-221.
31. Gorshkova, T.A., Ageeva, M., Chemikosova, S., Salnikov, V. 2005. Tissue-specific processes during cell wall formation in flax fiber. Plant Biosyst. 139: 88-92.
32. Gouanve, F., Marais, S., Bessadok, A., Langevin, D., Morvan, C., Metayer, M. 2006. Study of water sorption in modified flax fibers. J. Appl. Polym. Sci. 101: 4281-4289.
33. Lacoux, J., Klein, D., Domon, J.M., Burel, C., Lamblin, F., Alexandre, F., Sihachakr, D., Roger, D., Balange, A.P., David, A., Morvan, C., Laine, E. 2003. Antisense transgenesis of Linum usitatissimum with a pectin methylesterase cDNA. Plant Physiol. Biochem. 41: 241-249.
34. Lamblin, F., Saladin, G., Dehorter, B., Cronier, D., Grenier, E., Lacoux, J., Bruyant, P., Laine, E., Chabbert, B., Girault, F., Monties, B., Morvan, C., David, H., David, A. 2001. Over-expression of a heterologous sam gene encoding S-adeno-sylmethionine synthetase in flax (Linum usitatissimum) cells: consequences on methylation of lignin precursors and pectins. Physiol. Plant. 112: 223-232.
35. Lev-Yadun, S. 2001. Intrusive growth—the plant analog of dendrite and axon growth in animals. New Phytol. 150: 508-512.
36. Mardis, E.R. 2006. Anticipating the 1,000 genome. Genome Biol. 7: Art. Nom. 112.
37. McCorriston, J. 1997. The fiber revolution: textile extensification, alienation, and social stratification in ancient Mesopotamia. Curr. Anthropol. 38: 517-549.
38. Meredith, R. 1953. Measurements of orientation in cotton fibres using polarized light. Br. J. Appl. Phys. 4: 369-373.
39. Millam, S., Obert, B., Pret'ova, A. 2005. Plant cell and biotechnology studies in Linum usitatissimum—a review. Plant Cell Tiss. Org. 82: 93-103.
40. Mohanty, A.K., Misra, M., Hinrichsen, G. 2000. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276: 1-24.
41. Morrison, W.H., Akin, D.E. 2001. Chemical composition of components comprising bast tissue in flax. J. Agric. Food Chem. 49: 2333-2338.
42. Morrison, W.H., Himmelsbach, D.S., Akin, D.E., Evans, J.D. 2003. Chemical and spectroscopic analysis of lignin in isolated flax fibers. J. Agric. Food Chem. 51: 2565-2568.
43. Morvan, C., Andeme-Onzighi, C., Girault, R., Himmelsbach, D.S., Driouich, A., Akin, D.E. 2003. Building flax fibres: more than one brick in the walls. Plant Physiol. Biochem. 41: 935-944.
44. Muir, A.D., Westcott, N.D. 2003. Flaxseed constituents and human health. In: Muir, A.D., Westcott, N.D., eds. Flax: the genus Linum. Taylor & Francis, New York, pp. 243-251.
45. Muller, M., Czihak, C., Vogl, G., Fratzl, P., Schober, H., Riekel, C. 1998. Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam smallangle X-ray scattering. Macromolecules 31: 3953-3957.
46. NCBI. 2006. http://ncbi.nlm.nih.gov
47. Ouajai, S., Shanks, R.A. 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stabil. 89: 327-335.
48. Salmon-Minotte, J., Franck, R.R. 2005. Flax. In: Franck, R.R., ed. Bast and other plant fibres. CRC Press, Boca Raton, FL, pp. 94-175.
49. Segal, L., Wakelyn, P.J. 1983. Cotton fibers. In: Lewin, M., Pearce, E.M., eds. Handbook of fiber science and technology. Vol. IV. Marcel Dekker, New York, pp. 809-908.
50. Shanks, R.A., Hodzic, A., Ridderhof, D. 2006. Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J. Appl. Polym. Sci. 101: 3620-3629.
51. Snegireva, A.V., Ageeva, M.V., Vorob'ev, V.N., Anisimov, A.V., Gorshkova, T.A. 2006. Plant fiber intrusive growth characterized by NMR method. Russ. J. Plant Physiol. 53: 163-168.
52. Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313: 1596-1604.
53. Upfold, R.A., Hume, D.J. 1984. Flax in Ontario. Ontario Ministry of Agriculture, Food, and Rural Affairs, Toronto, Ontario.
54. van Zeist, W., Bakker-Heeres, J.A.H. 1975. Evidence for linseed cultivation before 6000 BC. J. Archaeol. Sci. 2: 215-219.
55. Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crop. Prod. 19: 245-254.
56. Vicre, M., Jauneau, A., Knox, J.P., Driouich, A. 1998. Immunolocalization of beta-(1 -> 4) and beta-(1 -> 6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax root tissues. Protoplasma 203: 26-34.
57. Wrobel, M., Zebrowski, J., Szopa, J. 2004. Polyhydroxybutyrate synthesis in transgenic flax. J. Biotechnol. 107: 41-54.
http://brill.metastore.ingenta.com/content/journals/10.1560/ijps_54_4_273
Loading

Article metrics loading...

/content/journals/10.1560/ijps_54_4_273
2006-05-13
2018-09-19

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation