Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Chloroplast DNA diversity in the wild shrub Cytisus scoparius L. (Leguminosae)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Israel Journal of Plant Sciences

Cytoplasmic DNA (chloroplast and mitochondrial DNA) of 40 Cytisus scoparius individuals collected from four deciduous forests across Europe were studied using the PCR-RFLP technique. Twenty-one pairs of universal primers in combination with four restriction enzymes were screened for cpDNA and mtDNA amplification and restriction digestion profiles of the amplified fragments. In all, 10 primer-restriction enzyme combinations showed polymorphisms. Fourteen cpDNA haplotypes were found, of which 10 are unique to a population. All the populations are polymorphic in their haplotype composition. Intraspecific cpDNA diversity detected in this species will be useful for population genetic studies. High cpDNA diversity detected in the study must be dealt with cautiously when using chloroplast genomes for phylogenetic studies involving this species.

Affiliations: 1: Departamento de Biología Vegetal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad, Politécnica de Madrid, Ciudad Universitaria s/n ; 2: Departamento de Biologî¡ Vegetal, Escuela T꤮ica Superior de Ingenieros Agr󮯭os, Universidad, Polit꤮ica de Madrid, Ciudad Universitaria s/n


Full text loading...


Data & Media loading...

1. Soltis, D.E., Soltis, P.S., Milligan, B.G. 1992. Intraspecific chloroplast DNA variation: systematics and phylogenetic implications. In: Soltis, D.E., Soltis, P.S., Doyle, J.J., eds. Molecular systematics of plants. Chapman & Hall, New York, pp. 117-150.
2. Torres, A.M., Weeden, N.F., Martín, A. 1993. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor. Appl. Genet. 85: 937-945.
3. Cristofolini, G. 1991. Taxonomic revision of Cytisus desf. sect. Tubocytisus DC. (Fabaceae). Webbia 45: 187-219.
4. Banks, J.A., Birky, C.W. 1985. Chloroplast DNA diversity is low in a wild plant, Lupinus texensis. Proc. Natl. Acad. Sci. U.S.A. 82: 6950-6954.
5. Bassam, B.J., Caetano-Anollés, G., Gresshoff, P.M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 80: 81-84.
6. Holubova-Klásková, A. 1964. Bemerkungen zur Gliederung der Gattung Cytisus. Acta Univ. Carol. Suppl. 2: 1-24.
7. Ronfort, J., Saumitou-Laprade, P., Cuguen, J., Couvert, D. 1995. Mitochondrial DNA diversity and male-sterility in natural populations of Daucus carota ssp. carota L. Theor. Appl. Genet. 91: 150-159.
8. Wolfe, K.H., Wen-Hsiung, L., Sharp, P.M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc. Natl. Acad. Sci. U.S.A. 84: 9054-9058.
9. Mohanty, A., Martín, J.P., Aguinagalde, I. 2000. Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor. Appl. Genet. 100: 1304-1310.
10. Demesure, B., Sodzi, N., Petit, R.J. 1995. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 4: 129-131.
11. Dumolin-Lapègue, S., Pemonge, M.H., Petit, R.J. 1997a. An enlarged set of consensus primers for the study of organelle DNA in plants. Mol. Ecol. 6: 393-397.
12. Gillies, A.C.M., Abbott, R.J. 1996. Phylogenetic relationships in the genus Stylosanthes (Leguminosae) based upon chloroplast DNA variation. Plant Syst. Evol. 200: 193-211.
13. Lavin, M., Doyle, J.J., Palmer, J.D. 1990. Evolutionary significance of the loss of the chloroplast DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390-402.
14. Byrne, M., Moran, G.F. 1994. Population divergence in the chloroplast genome of Eucalyptus nitens. Heredity 73: 18- 28.
15. Cristofolini, G. 1997. The biodiversity of the Leguminosae-Genisteae and its genesis. Lagascalia 19: 121-128.
16. Barghigiani, C., Ristori, T. 1995. The use of some plants species to evaluate atmospheric mercury levels. In: Lorenzini, G., Soldatini, G.F., eds. Proc. Conf. Responses of Plants to Air Pollution: Biological and Economical Aspects, Pisa, Italy, pp. 200-204.
17. Peterson, D.J., Prasad, R. 1998. The biology of Canadian weeds. Can. J. Plant Sci. 78: 497-504.
18. Sañudo, A. 1973. Variabilidad cromosómica de las genisteas de la flora española en relación con su ecología. Bol. R. Soc. Esp. Hist. Nat., Secc. Biol. 71: 341-355.
19. Milligan, B.G. 1991. Chloroplast DNA diversity within and among populations of Trifolium pratense. Curr. Genet. 19: 411-416.
20. Palmer, J.D., Osorio, B., Thompson, W.F. 1988. Evolutionary significance of insertions in legume chloroplast DNAs. Curr. Genet. 11: 65-75.
21. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65.
22. Excoffier, L., Smouse, P.E. 1994. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136: 343-359.
23. Käss, E., Wink, M. 1997. Phylogenetic relationships in the Papilionoideae (Family Leguminosae) based on nucleotide sequence of coDNA (rbcL) and ncDNA (ITS 1 and 2). Mol. Phylogenet. Evol. 8: 65-88.
24. Prim, R.C. 1957. Shortest connection networks and some generalizations. Bell Labs. Tech. J. 36: 1389-1401.
25. Ferris, C., King, R.A., Väinolä, R., Hewitt, G.M. 1998. Chloroplast DNA recognizes three refugial sources of European oaks and suggests independient eastern and western immigrations to Finland. Heredity 80: 584-593.
26. Doyle, J.J. 1995. DNA data and legume phylogeny: a progress report. In: Crisp, M., Doyle, J.J., eds. Advances in legume systematics. Royal Botanic Gardens, Kew, Vol. 7, pp. 11- 30.
27. Excoffier, N.C., Smouse, P.E., Quattro, J.M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
28. Dumolin-Lapègue, S., Demesure, B., Fineschi, S., Le Corre, V., Petit, R.J. 1997b. Phylogeographic structure of white oaks throughout the European continent. Genetics 146: 1475-1487.
29. Luo, H., Van Coppenolle, B., Seguin, M., Boutry, M. 1995. Mitochondrial DNA polymorphism and phylogenetic relationships in Hevea brasiliensis. Mol. Breeding 1: 51-63.
30. Pons, O., Petit, R.J. 1995. Estimation, variance and optimal sampling of gene diversity. 1. Haploid locus. Theor. Appl. Genet. 90: 462-470.
31. Pons, O., Petit, R.J. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237-1245.
32. Rohlf, F.J. 1992. NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Software, New York.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Israel Journal of Plant Sciences — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation