Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Post-Ecdysial Change in the Permeability of the Exoskeleton of the Blue Crab, Callinectes Sapidus

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Abstract Crustaceans must replace their old exoskeleton with a new, larger one in order to grow and differentiate. During that process a new (pre-exuvial) cuticle is deposited beneath the old cuticle. Since breakdown products from the old cuticle have been reported to be removed from the old cuticle and transported across the new cuticle and hypodermis into the hemolymph, the preexuvial cuticle is presumed to be permeable. However, it has also been reported that intermolt cuticle is a highly impermeable structure that prevents loss of water and ions from the cuticle to the external environment. This study was designed to determine the timing of any change in the permeability of the cuticle of the blue crab, Callinectes sapidus, from the period just preceding ecdysis through the early postmolt period. To test for any changes in permeability pilot studies were performed on pieces of dorsobranchial cuticle from late premolt (D4) and early postmolt crabs (15 min, 2 h, 12 h and 18 h post-ecdysis) using 3H2O and an Ussing chamber. Additional permeability studies were done monitoring the movement of p-nitrophenol (pNP) across the cuticle using a more restricted post-exuvial time course (0, 5, 10, 15 and 30 min. post-ecdysis) as compared to premolt cuticle. Results from these studies as well as wash-out studies using tissues pre-loaded with pNP and staining of 1 h post-molt cuticle with OsO4 suggest that the epicuticle undergoes a transition at or soon after ecdysis that renders it impermeable to water and small molecules. While the precise mechanism for this transition is unknown, it is clear that the resultant alteration in epicuticle permeability during early post-ecdysis allows for the formation of a barrier that prevents osmotic and ionic exchange, allows for the generation of significant hydrostatic pressure, and provides a suitable microenvironment for calcification.

Affiliations: 1: Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, North Carolina 28403


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation