Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Association of a Myosin Motor with Membrane-Bounded Pigment Granules in Freshwater Shrimp Chromatophores: Evidence from the Nitella Actin-Cable Assay

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Abstract We have adapted an actin-myosin motility assay to examine the interactions in vitro between actin cables isolated from the giant internodal cells of the freshwater alga, Nitella, and pigment granules extracted from red ovarian chromatophores of the freshwater palaemonid shrimp, Macrobrachium olfersi. The chromatophore pigment mass consists of large (0.5–1.0-µm diameter) membrane-bounded granules, and small (140-nm diameter), amembranous granules, both structurally continuous with the abundant smooth endoplasmic reticulum. Our previous immunocytochemical studies show a myosin motor to be stably associated with the pigment mass; however, to which granule type or membrane the myosin motor is attached is unclear. Here, we show that sodium vanadate, a myosin ATPase inhibitor, markedly increases the affinity of isolated, large, membrane-bounded granules for Nitella actin cables to which they become permanently attached. This interaction does not occur in granule preparations containing ATP with uninhibited, active myosin without vanadate. We propose that a stable state of elevated affinity is established between the granule-located myosin motor and the Nitella actin cables, resulting from a vanadate-inhibited acto-myosin-ADP complex. This finding provides further evidence for a myosin motor positioned on the surface of the membrane-bounded pigment granules in shrimp ovarian chromatophores.

Affiliations: 1: Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brasil


Full text loading...


Data & Media loading...

1. Alberts B. , Johnson A. , Lewis J. , Raff M. 2002 Molecular Biology of the Cell. Fourth edition Garland Publishing New York
2. Berg J. S. , Powell B. C. , Cheney R. E. 2001 "A millennial myosin census." Molecular Biology of the Cell Vol 12 780 794 [Crossref]
3. Bevan A. P. , Drake P. G. , Yale J. F. , Shaver A. , Posner B. I. 1995 "Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis." Molecular Cell Biochemistry Vol 153 49 58 [Crossref]
4. Bhattacharyya S. , Tracey A. S. 2001 "Vanadium(V) complexes in enzyme systems: aqueous chemistry, inhibition and molecular modeling in inhibitor design." Journal of Inorganic Biochemistry Vol 85 9 13 [Crossref]
5. Boyle R. T. 2005 "Identificação de proteínas motores e componentes do citoesqueleto envolvidos na translocação pigmentar nos cromatossomos ovarianos do camarão, Macrobrachium olfersi (Crustacea, Decapoda)." Ph.D. thesis. Universidade de São Paulo 105
6. Boyle R. T. , McNamara J. C. 2006 "Association of kinesin and myosin with pigment granules in crustacean chromatophores." Pigment Cell Research Vol 19 (1) 68 75 [Crossref]
7. Boyle R. T. , McNamara J. C. 2008 "A spring-matrix model for pigment translocation in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi (Crustacea, Decapoda)." Biological Bulletin Vol 214 111 121 [Crossref]
8. Fantus I. G. , Tsiani E. 1998 "Multifunctional actions of vanadium compounds on insulin signaling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects." Molecular Cell Biochemistry Vol 182 109 119 [Crossref]
9. Fernlund P. , Josefsson L. 1972 "Crustacean color-change hormone: amino acid sequence and chemical synthesis." Science Vol 177 173 175 [Crossref]
10. Flicker P. F. , Peltz G. , Sheetz M. P. , Parham P. , Spudich J. A. 1985 "Site-specific inhibition of myosin-mediated motility in vitro by monoclonal antibodies." Journal of Cell Biology Vol 100 1024 1030 [Crossref]
11. Goodno C. C. 1979 "Inhibition of myosin ATPase by vanadate ion." Proceedings of the National Academy of Science U S A Vol 76 2620 2624 [Crossref]
12. Josefsson L. 1967 "Separation and purification of distal retinal pigment hormone and red pigment concentrating hormone of the crustacean eyestalk." Biochimica et Biophysica Acta Vol 148 300 303 [Crossref]
13. Lodish H. , Scott M. P. , Matsudaira P. , Darnell J. , Zipursky L. , Kaiser C. A. , Berk A. , Krieger M. 2003 Molecular Cell Biology. Fifth edition W. H. Freeman New York
14. McNamara J. C. 1980 "Ultrastructure of the chromatophores of Palaemon affinis Heilprin (Crustacea, Decapoda). The structural basis of pigment migration." Journal of Experimental Marine Biology and Ecology Vol 46 219 229 [Crossref]
15. McNamara J. C. 1981 "Morphological organization of crustacean pigmentary effectors." Biological Bulletin Vol 161 270 280 [Crossref]
16. McNamara J. C. , Ribeiro M. R. 1999 "Kinetic characterization of pigment migration and the role of the cytoskeleton in granule translocation in the red chromatophores of the shrimp Macrobrachium olfersii (Crustacea, Decapoda)." Journal of Experimental Zoology Vol 283 19 30 [Crossref]
17. McNamara J. C. , Ribeiro M. R. 2000 "The calcium dependence of pigment translocation in freshwater shrimp red ovarian chromatophores." Biological Bulletin Vol 198 357 366 [Crossref]
18. McNamara J. C. , Sesso A. 1982 "Pigment biogenesis in freshwater shrimp ventral nerve chord chromatophores." Cell and Tissue Research Vol 222 167 175 [Crossref]
19. Milne Edwards H. 1837 Histoire naturelle des Crustacés, comprenant l'anatomie, la physiologie et la classification de ces animaux. Librairie Encyclopédique de Roret. Vol. 2 Imprimerie et Fonderie de Fain Paris 532
20. Probine M. C. , Preston R. D. 1958 "Protoplasmic streaming and wall structure in Nitella." Nature Vol 182 1657 1658 [Crossref]
21. Rankin W. M. 1898 "The Northrop collection of Crustacea from the Bahamas." Annals of the New York Academy of Sciences Vol 11 225 258 [Crossref]
22. Ribeiro M. , McNamara J. C. 2003 "Evidence for actin-myosin interaction during pigment aggregation in freshwater shrimp ovarian chromatophores." In, III Simpósio Temático sobre Citoesqueleto e Diferenciação Celular, 2001, São Paulo. Biocell Vol 26 295
23. Ribeiro M. , McNamara J. C. 2007 "Calcium movements during pigment aggregation in freshwater shrimp chromatophores." Pigment Cell Research Vol 20 70 77 [Crossref]
24. Richards T. A. , Cavalier-Smith T. 2005 "Myosin domain evolution and the primary divergence of eukaryotes." Nature Vol 436 1113 1118 [Crossref]
25. Robison W. G. , Charlton J. S. 1973 "Microtubules, microfilaments and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea)." Journal of Experimental Zoology Vol 186 279 304 [Crossref]
26. Rodionov V. I. , Hope A. J. , Svitkina T. M. , Borisy G. G. 1998 "Functional coordination of microtubule-based and actin-based motility in melanophores." Current Biology Vol 8 165 168 [Crossref]
27. Rodionov V. I. , Yi J. , Kashina A. , Oladipo A. , Gross S. P. 2003 "Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels." Current Biology Vol 13 1837 1847 [Crossref]
28. Rogers S. L. , Gelfand V. I. 1998 "Myosin cooperates with microtubule motors during organelle transport in melanophores." Current Biology Vol 8 161 164 [Crossref]
29. Rogers S. L. , Karcher R. L. , Roland J. T. , Minin A. A. , Steffen W. , Gelfand V. I. 1999 "Regulation of melanosome movement in the cell cycle by reversible association with myosin V." Journal of Cell Biology Vol 146 1265 1276 [Crossref]
30. Sheetz M. P. , Spudich J. A. 1983 "Movement of myosin-coated fluorescent beads on actin cables in vitro." Nature Vol 303 31 35 [Crossref]
31. Sheetz M. P. , Chasan R. , Spudich J. A. 1984 "ATP-dependent movement of myosin in vitro: characterization of a quantitative assay." Journal of Cell Biology Vol 99 1867 1871 [Crossref]
32. Smith C. A. , Rayment I. 1996 "X-ray structure of the magnesium(II). ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution." Biochemistry Vol 35 5404 5417 [Crossref]
33. Spudich J. A. , Kron S. J. , Sheetz M. P. 1985 "Movement of myosin-coated beads on oriented filaments reconstituted from purified actin." Nature Vol 315 584 586 [Crossref]
34. Thompson R. F. , Langford G. M. 2002 "Myosin superfamily evolutionary history." The Anatomical Record Vol 268 276 289 [Crossref]
35. Tuma M. C. , Gelfand V. I. 1999 "Molecular mechanisms of pigment transport in melanophores." Pigment Cell Research Vol 12 263 294 [Crossref]
36. Tuma M. C. , Josefsson L. , Castrucci A. M. 1995 "Cytoskeleton and PCH-induced pigment aggregation in Macrobrachium potiuna erythrophores." Pigment Cell Research Vol 8 215 220 [Crossref]
37. Vale R. D. , Szent-Gyorgyi A. G. , Sheetz M. P. 1984 "Movement of scallop myosin on Nitella actin filaments: regulation by calcium." Proceedings of the National Academy of Sciences U S A Vol 81 6775 6778 [Crossref]
38. Walker J. E. , Saraste M. , Runswick M. J. , Gay N. J. 1982 "Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold." EMBO Journal Vol 1 945 951
39. Whittaker M. , Wilson-Kubalek E. M. , Smith J. E. , Faust L. , Milliganand R. A. , Sweeney H. L. 1995 "A 35-Å movement of smooth muscle myosin on ADP release." Nature Vol 378 748 751 [Crossref]
40. Wiegemann A. F. A. 1836 "Beschreibung einiger neuen Crustaccen des Berliner Museums aus Mexiko und Brasilen." Arkiv für Naturgeschichte Vol 2 (1) 145 151
41. Wu X. , Bowers B. , Wei Q. , Kocher B. , Hammer J. A. III 1997 "Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor." Journal of Cell Science Vol 110 847 859
42. Wu X. , Bowers B. , Rao K. , Wei Q. , Hammer J. A. R. 1998 "Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo." Journal of Cell Biology Vol 143 1899 1918 [Crossref]

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation