Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

High Incidence of Cryptic Repeated Elements in Microsatellite Flanking Regions of Galatheid Genomes and Its Practical Implications for Molecular Marker Development

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Buy this article

$30.00+ Tax (if applicable)
Add to Favorites

image of Journal of Crustacean Biology

Abstract During the development of PCR primer sets for microsatellite marker loci from enriched genomic libraries for three squat lobster species from Galatheidae (Decapoda: Anomura); Munida rugosa (Fabricius, 1775), M. sarsi (Huus, 1935), and Galathea strigosa (Linnaeus, 1761) (collectively known as squat lobsters), a number of unforeseen problems were encountered. These included PCR amplification failure, lack of amplification consistency, and the amplification of multiple fragments. Careful examination of microsatellite containing sequences revealed the existence of cryptic repeated elements on presumed unique flanking regions. BLAST analysis of these and other VNTR containing sequences (N  =  252) indicates that these cryptic elements can be grouped into families based upon sequence similarities. The unique features characterising these families suggest that different molecular mechanisms are involved. Of particular relevance is the association of microsatellites with mobile elements. This is the first reported observation of this phenomenon in crustaceans, and it also helps to explain why microsatellite primer development in galatheids has been relatively unsuccessful to date. We suggest a number of steps that can be used to identify similar problems in microsatellite marker development for other species, and also alternative approaches for both marker development and for the study of molecular evolution of species characterised by complex genome organisation. More specifically, we argue that new generation sequencing methodologies, which capitalise on parallel and multiplexed sequencing may pave the way forward for future crustacean research.


Article metrics loading...


Affiliations: 1: (DAB, HF, PAP, correspondence, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK


Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to email alerts
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Journal of Crustacean Biology — Recommend this title to your library

    Thank you

    Your recommendation has been sent to your librarian.

  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation