Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access Estimation of Censored Regression Model: A Simulation Study

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Estimation of Censored Regression Model: A Simulation Study

  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Frontiers of Economics in China

We investigate the finite sample performance of several estimators proposed for the panel data Tobit regression model with individual effects, including Honoré estimator, Hansen’s best two-step GMM estimator, the continuously updating GMM estimator, and the empirical likelihood estimator (ELE). The latter three estimators are based on more conditional moment restrictions than the Honoré estimator, and consequently are more efficient in large samples. Although the latter three estimators are asymptotically equivalent, the last two have better finite sample performance. However, our simulation reveals that the continuously updating GMM estimator performs no better, and in most cases is worse than Honoré estimator in small samples. The reason for this finding is that the latter three estimators are based on more moment restrictions that require discarding observations. In our designs, about seventy percent of observations are discarded. The insufficiently few number of observations leads to an imprecise weighted matrix estimate, which in turn leads to unreliable estimates. This study calls for an alternative estimation method that does not rely on trimming for finite sample panel data censored regression model.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation